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Abstract: In this study, finite–time stability of the linear continuous time–delay systems was investigated. A novel 

formulation of the Lyapunov–like function was used to develop a new sufficient delay–dependent condition for 

finite–time stability. The proposed function does not need to be positive–definite in the whole state space, and it 

does not need to have negative derivatives along the system trajectories. The proposed method was compared with 

the previously developed and reported methodologies. It was concluded that the stability investigation using the 

novel condition for stability investigation was less complicated for numerical calculations. Furthermore, it gives 

results in comparison with the ones obtained with other analyzed conditions, and it provides superior results for 

these class of systems.  
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1. INTRODUCTION 
The concept of Lyapunov asymptotic stability is widely known in the control community. However, in some 

cases, Lyapunov asymptotic stability approach is not sufficient in the practical applications. Sometimes large values 

of state variables are not practically acceptable, for instance in the cases where saturation is present. In these cases, it 

is of particular significance to consider the behavior of dynamical systems only over a finite time interval. For this 

purpose, the concept of finite–time stability (FTS) can be used. For a system, it is said to be FTS once a time interval 

is fixed if its state does not exceed some bounds during this time interval. 

This concept stability dates back to the 1950s [1–3]. Since then, the researchers’ interest has moved toward the 

classical Lyapunov stability due to the lack of operative test conditions for FTS. Recently, the concept of FTS has 

been revisited in the prospective of the linear matrix inequality theory, which has allowed the formulation of less 

conservative conditions that can guarantee both FTS and finite–time stabilization of the linear continuous time 

systems. Many valuable results have been obtained for this type of stability, such as the ones reported in [4–11]. 

Time delay and parameter uncertainty are commonly encountered in various technical systems, such as electric, 

pneumatic and hydraulic networks, chemical processes, and long transmission lines.  

It has been shown that the existence of delay and uncertainty is the source of instability and poor performance 

of control systems.  

Similar to the systems without delay, there is a need to investigate FTS for a class of time–delay systems. 

There are few results on FTS of time–delay systems. Some early results on FTS of time–delay systems can be found 

in [12–18]. The results of these investigations are conservative because they use boundedness proprieties of the 

system response, i.e., of the solution of system models.  

Recently, based on the linear matrix inequality (LMI) theory, some results have been obtained for FTS for 

some particular classes of time–delay systems [19–22].  

In this article, a novel delay dependent condition for the finite–time stability of the linear continuous time–

delay systems has been presented. To solve the problem of FTS, we used the Lyapunov–like method. The sufficient 

condition is expressed in the form of algebraic inequality.  

 

2. PRELIMINARIES AND PROBLEM FORMULATION 
The following notations has been used throughout the article. Superscript “T ” stands for matrix transposition. 

n
 denotes the n –dimensional Euclidean space and 

n m
 is the set of all real matrices having dimension  n m . 

0F   means that F  is real symmetric and positive definite and F G  means that the matrix  F G  is positive 



   KNOWLEDGE – International Journal                                                                                                
Vol. 20.5                                                                                                                                                              

Bansko, December, 2017 

2304 

 

definite.   F  and   2 F , where    2 max1 2 TF F F   , are the matrix measures of matrix F , 

respectively. Matrices are assumed to be compatible for algebraic operations if their dimensions are not explicitly 

stated.  

Consider the following linear system with time delay: 

       0 1t A t A t   x x x& , (2.1) 

with a known vector valued function of the initial conditions:  

      , , 0t t t   x , (2.2) 

where   nt x  is the state vector,   mt u  is the control input, 0
n nA  , 1

n nA   and n mB   are 

known constant matrices,   is constant time delay. The initial condition,  tφ  is a continuous and differentiable 

vector–valued function of [ ,0]t   .  

In this study, the finite–time stability of the class of systems (2.1) has been investigated.  

Definition 2.1. Time–delay system (2.1) satisfying the given initial condition (2.2) is said to be finite–time 

stable (FTS) with respect to  , ,T   if: 

 
 

         
,0

sup , 0,
TT

t

t t t t t T


 
 

    φ φ x x . (2.3) 

Lemma 2.1. (Jensen's integral inequality) For any positive symmetric constant matrix n nM  , scalars a , b  

satisfying a b , a vector function  : , na b f  exists, such that the integrations are well defined, and: 

          

Tb b b

T

a a a

d M d b a M d      
   
    
   
   
  f f f f . (2.4) 

In the following part, some existing results on delay dependent stability conditions are presented. These 

stability conditions were used for comparison against the results derived in this study. 

Theorem 2.1. The time–delayed system (2.1) with the function of initial conditions (2.2) is finite time stable 

with respect to  , , T   if there exists a positive scalar   such that the following condition holds: 

 max ,
t

e t





   , (2.5) 

where: 

       
2

max max 0 0 1 1 max 1 0 0 1 1 1 1 1 2T T T T T T q
A A A A A A A A A A A A I  

 
           

, (2.6) 

with: 0 , 0q   and  0,T , [17]. 

Theorem 2.2. Time–delayed system (2.1) with the function of initial conditions (2.2) is finite time stable with 

respect to  , , T   if there exist a positive scalar max  such that the following condition holds: 

   max1 ,te t





     , (2.7) 

where:  

    max max 0 0 1 1, T TA A A A I        , (2.8) 

with   being symmetric matrix with all eigenvalues defined over the set of real numbers, [18]. 

Theorem 2.3. Time–delayed system (2.1) with the function of initial conditions (2.2) is finite time stable with 

respect to  , , T   if non–negative scalars  , 1 , 2 , 3  exist as well as positive definite symmetric matrices P

and Q  such that the following conditions holds, [21]: 

 
0 0 1

1

0
T

T

A P PA Q P PA

A P Q

   
   

 
, (2.9) 

 1 2 3, 0I P I Q I      , (2.10) 
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1 2 3

2

3

0 0

Te      





 
   
 
    

. (2.11) 

 

3. MAIN RESULT 
In this section, the Lyapunov–like approach was used in order to find sufficient delay dependent conditions of 

finite time stability for the time delayed systems.  

In the following part, a lemma necessary for construction of the system aggregation function is presented.  

It was observed that the novel result presented here is based on the result given in [23]. 

Lemma 3.1. Let a scalar aggregation function   V y t  be defined as: 

       TV t t ty y y , (3.1) 

where vector  ty  is defined in the following manner: 

        
0

t t Q t d



    y x x . (3.2) 

 Q t  is  n n  matrix which is continuous and differentiable over time interval  0,  satisfying the 

following differential matrix equation: 

         0 0 , 0,Q A Q Q     & , (3.3) 

with initial condition: 

   1Q A  . (3.4) 

Then Euler derivative of   V ty  is given as: 

       TV t t t y y y& , (3.5) 

where: 

      0 00 0
T

A Q A Q     . (3.6) 

Proof. From (3.1), follows: 

 

              

           

0 0

0 0

T T T

T T T

dV t t t Q d t Q t d
dt

dt t Q d t Q t d
dt

 

 

     

     

  
      
  
  

  
      
  
  

 

 

y x x x x

x x x x

& &

&

. (3.7) 

The further part of the proof is straightforward if the following expression    
0

d
Q t d

dt



   x  was explicitly 

specified.  

In that sense, let us look at this expression after the derivation on the variable   has been performed: 

              d Q t Q t Q t
d

     
 

    


x x x& . (3.8) 

It is noticeable that: 

      t t
t

 

    
 

x x . (3.9) 

By substituting the previous equation into (3.8), the following equation can be obtained: 

              d Q t Q t Q t
d t

     


    


x x x& , (3.10) 

or after rearrangement: 

              dQ t Q t Q t
t d

     


     


x x x& . (3.11) 
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The previous relation can be further derived as: 

          d Q t Q t
d t t

     


x x , (3.12) 

so, by virtue of (3.12), the expression can be derived as: 

            
0 0 0

d dQ t d Q t d Q t d
d t d

  

        


      x x x& , (3.13) 

or: 

                
0 0

0d Q t d Q t d Q t Q t
d t

 

             x x x x& . (3.14) 

By employing (3.4), the previous equation can be directly rewritten as: 

              1

0 0

0d Q t d Q t d A t Q t
d t

 

            x x x x& . (3.15) 

Equation (3.7) becomes: 

 

                

           

             

0 1 1

0

0 0

0 1 1

0

0

0

T T T T T T T T T T

T T T

V t t A t A t Q d t A t Q

t Q t d t t Q d

A t A t Q t d A t Q t



 



    

     

    

 
        
 
 

   
        
   
   

 
        
 
 



 



y x x x x x

x x x x

x x x x x

&&

&

, (3.16) 

or: 

 

                  

               

0

0 0

0

0 0

0

0

T T T T T T

T T T

V t t A t Q t Q d t Q t d

t t Q d A t Q t Q t d

 

 

     

     

  
       
  
  

  
       
  
  

 

 

y x x x x x

x x x x x

&&

&

. (3.17) 

After rearrangement, the previous equation can be expressed as follows: 

 

             

            

            

            

0 0

0

0

0

0

0 0

0 0

0

0

T T T

T T T

T T T T

T T T

V t t A Q A Q t

t A Q Q Q Q t d

t Q A Q Q Q d t

t Q Q Q Q t d d





 

    

    

       

   

   

 
    
 
 

   





 

y x x

x x

x x

x x

&

&

&

& &

. (3.18) 

By virtue of (3.3), one can get: 
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                 

          

                  

0 0

0

0 0

0

0 0

0 0

0 0

0 0

0 0

T T T T

T T T T

T T T T T

V t t t t A Q A Q Q t d

t Q A Q A Q d t

t Q A Q Q Q A Q Q t d d





 

  

  

       

      

 
     
 
 

     





 

y x x x x

x x

x x

&

, (3.19) 

and: 

 

            

              

0

0 0 0

T T

T T T T

V t t t t Q t d

t Q d t t Q Q t d d



  

  

        

    

 
       
 
 



 

y x x x x

x x x x

&

, (3.20) 

as well as: 

                     
0 0 0

T T TV t t t Q t d t Q d t Q t d

  

        
     
             
     
     

  y x x x x x x& , (3.21) 

and finally: 

             
0

T T TV t t t t Q d t



  
 
     
 
 
y x y x y& , (3.22) 

           
0

T T TV t t t Q d t



  
 
    
 
 

y x x y& , (3.23) 

       TV t t t y y y& , (3.24) 

what completes the proof. Q.E.D. 

Theorem 3.1. Time–delayed system (2.1) with the function of initial conditions (2.2), having the following 

properties: 

               1 2

0

0,
TT

nt Q t d t t t t



       x x φ K , (3.25) 

is finite time stable with respect to  , , T  , if there exist a matrix    0, 0,Q     , being the general solution 

of (3.3) and if the following condition is satisfied: 

     max1 1 ,
t

e t
 

 


 
     , (3.26) 

where: 

  0 0R A Q  , (3.27) 

 TR R   , (3.28) 

     
 

 

22

max
10 0

2

R
T eQ Q

R

 

 


 , (3.29) 

    max
1
2

TR R R   , (3.30) 

and  0Q  is positive definite solution of the following nonlinear transcendental matrix equation: 

    0 0
10

A Q
e Q A


 . (3.31) 

Proof. From (3.5), follows: 

            max
TV t t t V t   y y y y& . (3.32) 
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By integrating (3.32) from 0 to t , with  0,t T , it was obtained: 

       max 0
t

V t e V
  

 y . (3.33) 

From (3.1), one can find: 

                     
0 0 0

0 0 0 2 0

T

T TV Q d Q d Q d

  

        
 
       
  

  y x x x x x x . (3.34) 

Based on the known inequality
7
 and with the particular choice of I  , one can get: 

 

              

           

0

0 0 0

0 0 0 0 0T T T

T

T

V Q Q d

d Q d Q d



  

  

        

 

 
       
 
 



  

y x x x x

x x x x

. (3.35) 

Using the Jensen's integral inequality, as in Lemma 2.1, the following inequalities are valid: 

 

              

           

0

0 0

0 0 0 0 0T T T

T T T

V Q Q d

d Q Q d



 

  

        

 

     



 

y x x x x

x x x x

. (3.36) 

Introducing the general solution of (3.3), given with: 

        00 , 0, , 0RQ e Q R A Q      , (3.37) 

and by substituting (3.37) into (3.36), the following expression is obtained: 

 

              

           

0

0 0

0 0 0 0 0 0 0

0 0

T

T

T T R T R

T T T R R

V e Q Q e d

d Q e e Q d



 

 

 



      

 

     



 

y x x x x

x x x x

, (3.38) 

or: 

 

                 

             

max max

0

max

0 0

0 0 0 0 0 0 0

0 0

T

T

T T R R T

T R R T T

V Q Q e e d

d e e Q Q d



 

 

 

  

       

 

     



 

y x x x x

x x x x

, (3.39) 

and: 

 

                 

            

max max

0

max max

0 0

0 0 0 0 0 0 0

0 0

T

T

T T T R R

T T R R T

V Q Q e e d

d Q Q e e d



 

 

 

  

       

  

    



 

y x x x x

x x x

. (3.40) 

Based on Definition 2.1, one can find: 

                                                 
7
            12 , 0T T Tu t v t u t u t v t v t            
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         

      

max max

0

max max

0

0 0 0

0 0

T

T

T R R

T R R

V Q Q e e d

Q Q e e d



 



 

    

    

 

 





y

. (3.41) 

From Coppell’s inequality given in the following form: 

    2
max

T F tFt F te e e
   , (3.42) 

with  F being any matrix measure, follows: 

              2
max

0

0 1 1 0 0
RTV Q Q e d



          y , (3.43) 

or: 

 

         
 

 

      
 

 

2

max

0

2

max

0 1 1 0 0
2

11 1 0 0
2

R
T

R
T

eV Q Q
R

eQ Q
R

 
 



 

  


  






 
    

 

    
 

y

, (3.44) 

and finally: 

      0 1 1V     y . (3.45) 

Based on the crucial assumption of Theorem 3.1, in connection with definiteness of matrix:  Q v  over 

prescribed time interval and using the assumption given in (3.25), what directly leads to:  

       T t t V tx x y . (3.46) 

Taking into account (3.33) and (3.45), it follows: 

                max max0 1 1
t tT t t V t e V e

 
  

   
     x x y . (3.47) 

Finally, condition (3.26) and the above inequality imply: 

     ,T t t t  x x , (3.48) 

what was to be proven. Q.E.D.  

 

4. CONCLUSION 
This paper extends some of the basic results in the area of the non–Lyapunov stability to the linear continuous 

invariant time–delay systems.  

Under certain assumptions, the new sufficient, delay–dependent criteria for the finite time stability has been 

presented.  

The derived result is based on algebraic inequalities only, which can be solved without using appropriate 

optimization methods. It has been shown that, under some circumstances, the conditions derived in this study leads 

to significant improvement in the finite time stabilitz stability analysis, particularly in comparison with results given 

in [23], [24]. 
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