
KNOWLEDGE – International Journal

Vol.60.3

383

A COMPARATIVE ANALYSIS OF THE USE OF REGEXP AND LIKE OPERATOR IN

MYSQL

Dušan Stefanović

Academy of Applied Technical and Preschool Studies, Nis, Serbia,

dusan.stefanovic@akademijanis.edu.rs

Nikola Vukotić

Academy of Applied Technical and Preschool Studies, Nis, Serbia, nikola.vukotic@akademijanis.edu.rs

Slavimir Stošović

Academy of Applied Technical and Preschool Studies, Nis, Serbia,

slavimir.stosovic@akademijanis.edu.rs

Goran Milosavljević

Academy of Applied Technical and Preschool Studies, Nis, Serbia,

goran.milosavljevic@akademijanis.edu.rs

Abstract: This research paper compares the performance of RegExp and LIKE operators in MySQL for searching

text data. Research shows which of these two techniques provides better search performance and efficiency. The

paper includes an overview of RegExp and LIKE operators, their syntax and characteristics. The research

methodology includes the definition of test scenarios, the selection of test data and the implementation of the

experimental environment. Parameters considered include execution time as well as implementation complexity.

Analysis of the results includes comparing the advantages, disadvantages and functionality of both approaches.

Different test scenarios were tested on databases of ten thousand, one hundred thousand and one million rows of

user data, in order to evaluate how the number of data being searched affects execution times. The aim of the

research is to provide guidelines for choosing the most efficient tool for searching textual data in MySQL. The

results of this research will be useful to developers in making decisions about the selection of textual data search

tools.

Keywords: RegExp, LIKE operator, MySQL, performance, BRE, ERE.

1. INTRODUCTION

In today's era of big data, the increasing emphasis is on the speed and efficiency of searching big data. Tools such as

RegExp (Regular Expressions) and LIKE operators play a key role in data filtering. RegExp allows data to be

searched based on various patterns, while the LIKE operator performs the search using the so-called wildcart syntax.

The challenge is to determine which of these approaches provides better runtime performance in MySQL databases.

The research was conducted with a focus on comparing the performance of RegExp and the LIKE operator using

databases with ten thousand rows, one hundred thousand rows, and one million rows. By applying these techniques

to the data and recording the execution time for each of the techniques, the obtained results are presented in tabular

format. This kind of research has a practical application because it makes it possible to make a decision on the

choice of a technique for searching data in the MySQL database. The work will include a detailed description of

RegExp and LIKE operators, implementation of tests, analysis of performed tests and comparison of performance in

different scenarios.

2. REGEXP

Regular expressions, often known as RegExp (Barnett, 2023; Erwig & Gopinath, 2012; Kahrs, 1999), is a language

used to create patterns, find and manipulate text based on mathematically defined sets of symbols and rules for

combining them. They are applied in a variety of contexts, including programming languages, command-line

interfaces, and text editors (Friedl, 2006). There are basic regular expressions BRE (Basic Regular Expressions) and

extended regular expressions ERE (Extended Regular Expressions). It is possible to match the functionality of basic

and extended regular expressions, and in some implementations it is practical to use a hybrid syntax that supports

elements of both types of regular expressions (Walilko, 2023). A RegExp expression can be composed of the

metacharacters shown in Table I, the quantifiers shown in Table II, the ranges shown in Table III, and the character

classes shown in Table IV.

mailto:dusan.stefanovic@akademijanis.edu.rs
mailto:nikola.vukotic@akademijanis.edu.rs
mailto:slavimir.stosovic@akademijanis.edu.rs
mailto:goran.milosavljevic@akademijanis.edu.rs

KNOWLEDGE – International Journal

Vol.60.3

384

TABLE I: REGEXP METACHARACTERS

Template Template description

. Matches a single, any character, except a

newline

^ Match the beginning of a line or text

$ Match the end of a line or text

\ Neutralization of special meanings of signs

|

Matching character from left or right. If the

character on one side matches, the other is

ignored

TABLE II: REGEXP QUANTIFIERS

Template Template description

? A set of characters that appear once or never

* A set of characters that appear never, once,

or more than once

+ A set of characters that appear one or more

times

{x} The number of times the character is

repeated X times

{x, } The number of times the character is

repeated X or more times

{x,y} Number of repetitions ranging from X to Y

times

TABLE III: REGEXP RANGES

Template Template description

() Character grouping

{ } Defining the number of characters to match

[] Defining the characters to match

[pqr] Matches any character listed in square

brackets

[pqr][xy] Match p, q or r, followed by x or y

[…] Any character enclosed in square brackets

[^ …] Any character not enclosed in square

brackets

[az] A set of characters in the range a to z

[AZ] A set of characters in the range A to Z

[0-9] A set of characters representing a digit from

0 to 9

TABLE IV: REGEXP CHARACTER CLASSES

Template Template description

\s Any whitespace character (space, tab,

newline)

\S Any character that is not a whitespace

character

\w Any character from the set [a-zA-Z0-9_]

\W Any non-set character

[a-zA-Z0-9_]

KNOWLEDGE – International Journal

Vol.60.3

385

\d Any character representing a digit from [0-9]

\D Any non-digit character [0-9]

2.1. RegExp for email addresses

[\w\.] ∗ @(\w ∗\.){1,10}\w ∗

In expression 1 [\𝑤\\.] ∗ it finds the characters representing the username, consisting of the characters [a-zA-Z0-

9_] and a dot that can be part of the username. In expression 1 the symbol @ that separates the username from the

domain name. Part of the statement (\𝑤 ∗\\.){1,10} represents a domain name without a Top Level Domain. The

top level domain is represented by \𝑤 ∗ (Vukićević, 2010).

2.2. RegExp for phone numbers

0[0 − 9]{2}[/−][0 − 9]{3,4}−? [0 − 9]{3,4}

In expression 2, 0 it indicates that the character string must contain the digit zero at that position. The next two

characters [0 − 9]{2}[/−] must be the digits 0 to 9, followed by the "-" sign. After that, a character set [0 − 9]{3,4}.
represents a group of three or four digits. In the part of the expression −? the sign "-" may or may not appear and
[0 − 9]{3,4} it is a group of characters of three or four digits.

3. LIKE OPERATOR

The LIKE operator (Smith, 2023) is a logical operator, designed to determine whether a given string of characters

conforms to a specific pattern. It is typically used within a WHERE clause to facilitate searching for a specific

pattern within a column's values. Because the LIKE operator finds specific pattern it could be interesting to compare

it with RegExp (SyBooks, 2012; Barnhill, 2019). The LIKE operator can be used alone or in combination with

wildcards.

3.1. Wildcard %

Within MySQL, the percent symbol (%) functions as a wildcard character, used in conjunction with the LIKE

operator to effectively match any character string consisting of zero or more characters and can be used to search for

any number of characters at a given position (Nichter, 2022).

The use of the wildcard % with the LIKE operator is shown in Table V.

TABLE V: LIKE OPERATOR WITH WILDCARD %

Template Template description

'a%' Finds a value that starts with the character

'a', followed by any other character

'%a Finds a value that ends with the character 'a'

'%a% Finds a value that contains the character 'a'

at any position

'a%b' Finds a value that starts with the character 'a'

and ends with the character 'b'

3.2. Wildcard _

The _ wildcard character in MySQL is used in conjunction with the LIKE operator to replace just one of any single

characters in place of the wildcard character. If it is necessary to replace a large number of characters, it is possible

to add a large number of wildcard characters.

The use of the _ wildcard character with the LIKE operator is shown in Table VI.

(1)

(2)

KNOWLEDGE – International Journal

Vol.60.3

386

TABLE VI: LIKE OPERATOR WITH WILDCARD _

Template Template description

'_a' Finds a value that contains two characters of

which the character in the second position is

'a'

'a_' Finds a value containing two characters of

which the character in the first position is 'a'

'_ _' Finds any value composed of any two

characters

TABLE VII: LIKE OPERATOR WITH WILDCARDS

Template Template description

'_a%' Finds any value that has the character 'a' in

the second position

'a_%' Finds a loyalty that has a minimum of two

characters and the character 'a' is in the first

position

'_ _ %' Finds a loyalty that consists of at least three

or more characters.

3.3. Wildcard combination

If it is necessary to perform a more advanced form search, it is possible to combine wildcard characters in the work

with the LIKE operator.

An example of a combination of wildcard characters with the LIKE operator is shown in Table VII.

4. COMPARING PERFORMANCE

In order to determine and compare the performance between RegExp and the LIKE operator, a test was conducted

on databases of different sizes and data from columns with different numbers of characters. Testing was performed

on databases containing ten thousand rows, one hundred thousand rows, and one million rows. Performance was

compared when executing simple queries using only RegExp and LIKE operators, and when using complex queries

that, in addition to RegExp and LIKE operators, contain additional operators such as AND, OR and string functions.

The simulation included an environment that was identical for each scenario.

4.1. Database with 10 thousand rows

Several test scenarios were conducted over the column 'username', which contains up to ten characters, and

'password', which contains up to 30 characters. The comparison of execution time for the test example over the

"username" column is shown in Table VIII, and over the "password" column in Table IX.

TABLE VIII: USERNAME COLUMN

Test scenario RegExp LIKE

Search by specific word 3ms 2ms

Search by initial character 5 ms 4ms

Search by last character 4ms 4ms

Search by character at a specific

position

6ms 5 ms

Search by pattern that can be in any

position

3ms 2ms

TABLE IX: PASSWORD COLUMN

Test scenario RegExp LIKE

Search by initial character 4ms 3ms

Search by last character 5 ms 3ms

Search by character at a specific

position

5 ms 3ms

Search by pattern that can be in any

position

5 ms 4ms

KNOWLEDGE – International Journal

Vol.60.3

387

In all the mentioned test examples, over a base of ten thousand rows, the LIKE operator shows slightly better

performance of 1ms in terms of execution time, compared to RegExp.

4.2. Database with 100 thousand rows

Several test scenarios were conducted over the column 'username', which contains up to ten characters, and

'password', which contains up to 30 characters. The comparison of the execution time for the test example over the

"username" column is shown in Table X, and over the "password" column in Table XI.

TABLE X: USERNAME COLUMN

Test scenario RegExp LIKE

Search by specific word 48ms 41ms

Search by initial character 55 ms 45 ms

Search by last character 55 ms 48ms

Search by character at a specific

position

55 ms 52ms

Search by pattern that can be in any

position

49ms 43ms

TABLE XI: PASSWORD COLUMN

Test scenario RegExp LIKE

Search by initial character 49ms 46ms

Search by last character 51 ms 48ms

Search by character at a specific

position

55 ms 48ms

Search by pattern that can be in any

position

53 ms 46ms

In all the mentioned test examples, over a base of one hundred thousand rows, the LIKE operator shows better

performance, by 3 ms to 10 ms in terms of execution time, compared to RegExp.

4.3. Testing with simple queries over a database of one million rows

Since the comparison of performance and execution time, in the case of using a database with ten thousand rows and

a database with one hundred thousand rows, gives similar results, testing was carried out on a database with one

million rows using simple and complex queries. Several test scenarios were conducted over the 'username' column.

A comparison of execution times is shown in Table XII.

TABLE XII: USERNAME COLUMN

Test scenario RegExp LIKE

Search by specific word 424 ms 352 ms

Search by initial character 493 ms 408 ms

Search by last character 497 ms 424 ms

Search by character at a specific

position

504 ms 410 ms

Search by pattern that can be in any

position

434 ms 383 ms

TABLE XIII: PASSWORD COLUMN

Test scenario RegExp LIKE

Search by initial character 431 ms 389 ms

Search by last character 451 ms 408 ms

Search by character at a specific

position

442 ms 411 ms

Search by pattern that can be in any

position

446 ms 420 ms

KNOWLEDGE – International Journal

Vol.60.3

388

Several test scenarios were conducted over the 'password' column. A comparison of execution times is shown in

Table XIII.

It can be concluded that in all the mentioned test examples, over a database with one million rows when using

simple queries, the LIKE operator shows better performance in terms of execution time, from 26 ms to 96 ms,

compared to RegExp. Based on time averaging over the "username" column, using the LIKE operator is faster by 75

ms (15.9%), and over the "password" column by 35.5 ms (8.02%).

4.4. Testing with complex queries over a million-row database

Testing on a database with a million rows was performed using RegExp and LIKE operators in combination with

additional MySQL operators such as AND, OR and string functions.

The query for the first test example is shown in Fig. 4.1. The query for the second test example is shown in Fig. 4.2.

The query for the third test example is shown in Fig. 4.3.

Fig. 4.1. Search query for all male users with "John" in their first and last name

Fig. 4.2. Query to search for users who use a password with more than 15 characters

Fig. 4.3. Query to search for male or female users using a combination of AND and OR operators

After executing all three complex test cases, Table XIV shows the query execution times using RegExp and LIKE

operators.

TABLE XIV: COMPLEX QUERIES

Test scenario RegExp LIKE

Test example 1 7.1s 7s

Test example 2 13s 11s

Test example 3 31s 30s

KNOWLEDGE – International Journal

Vol.60.3

389

Based on time averaging over a million row database using more complex queries, using the LIKE operator is faster

by 1.03ms (6.05%).

5. CONCLUSION

Based on research and conducted testing, it was found that the LIKE operator shows better performance compared

to RegExp in the processed scenarios. The heighest acceleration 15.09% is in the processing of a larger number of

data and simpler queries, while the smallest difference is in the database with ten thousand rows. The LIKE operator

provides a faster and more efficient data search when it comes to less complex queries, and also when it comes to

more complex queries with a combination of some other operators.

It is important to note that these results may vary depending on the specific context, hardware resources and

configuration of the MySQL server.

Related to the testing conducted, MySQL developers who want to optimize their code and search better can get

usefull information and guidelines.

REFERENCES

Barnett, B. (2023, July 25). Regular Expressions, Retrieved from https://www.grymoire.com/Unix/Regular.html

Barnhill, B. (2019, December 9). How Regex in SQL Works. Retrieved from https://dataschool.com/how-to-teach-

people-sql/how-regex-works-in-sql/

Erwig, M. & Gopinath, R. (2012). Explanations for Regular Expressions. 7212. 394-408. 10.1007/978-3-642-28872-

2_27.

Friedl, J. (2006). Mastering Regular Expressions: Understand Your Data and Be More Productive. O'Reilly Media

Kahrs, S. (1999). Regular Expressions - a Graphical User Interface.

Nichter, D. (2022). Efficient MySQL Performance: Best Practices and Techniques. O'Reilly Media

Smith, N. (2023, April 27). MySQL LIKE Operator: 7 Examples and Best Practices. Retrieved from

https://blog.devart.com/mysql-like-tutorial.html

SyBooks Online (2012, January 1). SQL Anyware 12. Retrieved from

https://infocenter.sybase.com/help/index.jsp?topic=/com.sybase.help.sqlanywhere.12.0.1/dbreference/like-

regexp-similarto.html

Vukićević, N. (2010, October 23). Regularni izrazi - Napredna pretraga teksta. Retrieved from

https://www.codeblog.rs/clanci.php?p=regularni_izrazi

Walilko, A. (2023, August 21). What are Regular Expressions. Retrieved from https://www.liquidweb.com/kb/what-

are-regular-expressions/

https://dataschool.com/how-to-teach-people-sql/how-regex-works-in-sql/
https://dataschool.com/how-to-teach-people-sql/how-regex-works-in-sql/
https://infocenter.sybase.com/help/index.jsp?topic=/com.sybase.help.sqlanywhere.12.0.1/dbreference/like-regexp-similarto.html
https://infocenter.sybase.com/help/index.jsp?topic=/com.sybase.help.sqlanywhere.12.0.1/dbreference/like-regexp-similarto.html
https://infocenter.sybase.com/help/index.jsp?topic=/com.sybase.help.sqlanywhere.12.0.1/dbreference/like-regexp-similarto.html

