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Abstract: In the first part of this paper, the phenomena of spectral leakage, which occurs when applying the 

Discrete Fourier Transformation, is described. After that, q-SE and PCC interpolation algorithm with 1P Keys 

kernel, which are applied to reduce spectral leakage and increase the precision of fundamental frequency estimation, 

are described. In the second part of the paper, the results of the Experiment, which was conducted with the aim of 

determining the efficiency of frequency estimation using these two algorithms, are presented. For the purposes of 

the Experiment, a complex sinusoidal Test signal was created. The Test signal is modified in the time domain by 

applying some classic, time-symmetric, window functions. Using DFT the amplitude characteristic of the Test signal 

was determined. By analyzing the amplitude characteristic the fundamental frequency was estimated. The results of 

the Experiment, estimating error MSE and the execution time of the algorithms, are presented in tabular and 

graphical form. Based on the experimental results, a comparative analysis was performed and the high efficiency of 

the PCC interpolation algorithm with the implemented 1P Keys kernel was indicated. 

Keywords: frequency estimation, q-SE algorithm, PCC interpolation, interpolation kernel, 1P Keys kernel.  
                      
1. INTRODUCTION 

Quick and efficient estimation of parameters of the complex sinusoidal signals, is a very important task in the field 

of telecommunications, radar signals, speech signals, etc., (Serbes, 2019). For this purpose, digital signal processing 

(DSP) is used very intensively. In many areas of the speech signal processing (speech coding, speech synthesis, 

speech recognition, speaker recognition, etc.) it is necessary to estimate the fundamental frequency, f0. Estimation of 

the fundamental frequency is a very important and complex task. A number algorithms for estimating , f0 have been 

proposed. In them, signal processing in the time and/or spectral domain is performed (Umit et al., 2006). When 

estimating f0 in the spectral domain, methods based on locating peaks (peaking peaks) of the spectral characteristic 

and, after that, selecting the spectral component with the largest amplitude, are intensively applied. These methods 

are used to analyze the value of the signal in the spectrum at the frequencies at which the Discrete Fourier 

Transform (DFT) was calculated (Quinn, 1994). Most often, the real value of the fundamental frequency is not 

found at the frequencies where the DFT was calculated, but lies between two DFT samples (Pang et al., 2000). 

Then, in order to equalize the energy of the signal in the time and spectral domains (Parseval's theorem), the energy 

is distributed to neighboring DFT spectral components. This phenomenon is called spectral leakage. As a result, the 

peak of the DFT magnitude will be shifted in relation to the real peak by a fractional part of the frequency. This 

causes an error in frequency estimation, which is in the interval [-(fs / (2‧NDFT) Hz, (fs /(2‧NDFT) Hz], where fs is the 

sampling frequency and NDFT is the number of points at which the DFT is calculated). One way to reduce the f0 

estimation error is to calculate the spectrum amplitude in the interval between two samples using interpolation. With 

this procedure, the continuous spectrum is reconstructed on the basis of discrete DFT components. Further, the 

analysis of the spectrum is performed by analytical procedures (differentiation, integration, extreme values,...). 

Today, interpolation techniques based on convolution are intensively used (Savić et al., 2022). Interpolation 

methods can be divided into: a) non-iterative and b) iterative methods. Non-iterative methods are mainly based on 

the analysis of the spectral component with maximum amplitude and its neighboring spectral components (Quinn, 

1994) (Quinn, 1997) (Orguner, & Candan, 2014) (Liang et al., 2016) (Fan & Qi, 2018). Iterative methods solve the 

interpolation through a larger number of iterative steps (Aboutanios & Mulgrew, 2005) (Candan, 2011) (Candan, 

2013). 

In this paper, a comparative analysis of the accuracy of fundamental frequency estimation, using: a) the iterative q-

SE algorithm (Serbes, 2019) and b) the non-iterative PCC algorithm with the implemented 1P Keys kernel (Keys, 

1981), was performed. As criteria for comparative analysis: a) interpolation precision and b) execution time, were 

used. First, the effects of spectrum leakage are described using an Example, in which a complex signal is generated 

with a fundamental frequency in the range f0 = 125 - 140,625 Hz, and a sampling frequency fs = 8kHz. The range 

limits are the eighth (125 Hz) and ninth (140,625 Hz) DFT components of the spectrum. The DFT is of length NDFT 

= 512. After that, the fundamental frequency estimation algorithms, q-SE and PCC with 1P Keys kernel, are 

mailto:zoran.milivojevic@akademijanis.edu.rs
mailto:milica.mladenovic@akademijanis.edu.rs
https://ieeexplore.ieee.org/author/37356801900


KNOWLEDGE – International Journal                                                                                                                      

Vol.60.3 

 
492 

described. The second part of the paper describes the Experiment in which the following were tested: a) accuracy of 

frequency estimation and b) fundamental frequency estimation time. The Test signal is modified by classic, time-

symmetric, window functions: a) Hamming, b) Hanning, c) Blackman, d) Boxcar, e) Kaiser, f) Triang, g) Gausswin, 

h) Bartlett, i) Bohmanwin, and j ) Tukeywin. As a measure of the precision of the estimation MSE was used. The 

execution speed was tested on a PC (Processor Intel(R) Pentium(R) CPU G3220 @3.00 GHz, RAM 8.00 GB, OS: 

Windows 10 Enterprise). The speed test program was implemented in Matlab and the tic and toc commands were 

applied. The test results (MSE and execution time) are presented using graphs and tables. At the end, a comparative 

analysis of the results was performed. 

The further organization of this paper is as follows. In Section 2, the q-SE and 1P Keys PCC algorithm are 

described. In Section 3, the Experiment is described, the results of the Experiment are presented, and a comparative 

analysis is performed. Section 4 is the Conclusion. 

 

2. FUNDAMENTAL FREQUENCY ESTIMATION ALGORITHMS 

2.1. Spectral leakage  

Signal analysis in the spectral domain involves the application of DFT. DFT is used to calculate the amplitude and 

phase characteristic of the signal in the NDFT of spectral bins. When the analyzed signal has a frequency that differs 

from the frequencies at which the DFT is calculated, and in order to equalize the energy in the time and spectral 

domains (Parseval's theorem), energy leakage occurs in the spectrum on neighboring bins (spectral leakage). As an 

Example, in fig. 1.a shows the Test signal x in the time domain (eq. 7, fs = 8 kHz, with K = 10 harmonics). Over the 

Test signal x, DFT of length NDFT = 512, was applied. The frequency resolution is Δf = fs / NDFT = 15.625 Hz. In fig. 

1.b shows the amplitude characteristic for f0 = 125 Hz. DFT calculates the spectral component at this frequency 

(eighth bin), so there is no spectral leakage. Figures 1.c (f0 = 128.9063 Hz) and 1.d (f0 = 132.8125 Hz) show that 

there is spectrum leakage because the signal frequency and the DFT frequency are different. 

In many DSP applications, estimation of the signal frequency is required, so the processing is done in the spectral 

domain. The estimation problem occurs when spectral leakage occurs. A large number of frequency estimation 

algorithms, based on frequency interpolation between two bins, have been developed. In the further part of the 

paper, the following are described: a) iterative q-SE (Serbes, 2019) and b) non-iterative PCC algorithm with 1P 

Keys convolutional kernel (Pang et al., 2000) (Keys, 1981) (Milivojević et al., 2022). 

 

Figure 1. a) time form of the Test signal. Amplitude characteristic for: b) f0 = 125 Hz, c) f0 = 128.9063 Hz, and d) 

f0 = 132.8125 Hz. 

 

 
a) 

 
b) 

 
c) 

 
d) 

 

2.2. q-SE algorithm 

 

The algorithm, which was proposed in (Serbes, 2019), is based on the interpolation of DFT coefficients, in order to 

estimate the fundamental frequency of a complex sinusoidal signal. The fundamental frequency is manifested as the 

peak of the amplitude characteristic. Peak detection is achieved by the Peak-peaking algorithm. Sifting of the DFT 

coefficients is performed in the range ±q  [-0.5, 0.5] in relation to the detected peak of the amplitude characteristic. 

Therefore, this algorithm called q-shift estimator (q-SE). Sifting is realized by iteration. Therefore, this method is 

equivalent to the interpolation of the DFT coefficients 1 / |q| times.  

The q-SE algorithm is implemented in the following steps: 

 

Input: x - signal, N - number of samples, duzina, fs - sampling frequency. 

Output: f̂  - estimated frequency. 

Step 1: Determining the Discrete Fourier Transform: S = DFT(x, N). 
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Step 2: Determining the spectral component with the highest amplitude, i.e. index of peak of the DFT amplitude 

(Peak-peaking algorithm)  

      ˆ arg maxp
k

k P k ,      (1) 

where ˆ
pk  is the index of the peak of DFT amplitude. The amplitude of the spectral component is 
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Step 3: Setting the residual frequency δ = 0 (deviation of the real frequency from the DFT frequency). 

Step 4: Number of iteration steps to guarantee the uniform convergence of frequencies in the range [-0.5, 0.5]: 
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 FOR i = 1 to Q 

Step 5: Determination of residual frequency δ:  
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 END i 

Step 7: The estimated frequency is  
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2.3. PCC interpolation with 1P Keys kernel 

The algorithm for estimating the fundamental frequency of the signal is described in the paper (Pang et al., 2000). 

The algorithm is based on the signal amplitude characteristic convolution (DFT) with a convolutional kernel. A 

cubic, one-parameter Keys kernel (1P Keys), was used as a convolutional kernel. Therefore, this interpolation 

algorithm is called Parametric Cubic Convolutional (PCC) interpolation. The paper (Keys, 1981) describes a third-

order parameterized kernel, which, in the literature, is called the 1P Keys kernel. The definition of 1P Keys kernel is: 
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where α is the kernel parameter. The PCC algorithm consists of the following steps: Step 1: Determination of the 

amplitude characteristic of the signal, X = DFT(x), Step 2: Locating the spectral bin (Pick-peaking algorithm) with 

the largest amplitude X(k), Step 3: Determination of interpolation function PCC by interpolation Xr(f) = PCC(X, r) = 

 
1k L

i

i k L

p r f i
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 

  , where k ≤ f ≤ (k + 1), pi=X(i), r(f) is the kernel of interpolation and L the number of samples that 

participate in interpolation. Step 4: The estimated frequency of the complex signal is  arg maxe r
f

f X . 

3. EXPERIMENTAL RESULTS AND ANALYSIS 

3.1. Experiment 

In order to perform a comparative analysis of the parameters of interpolation algorithms: a) q-SE and b) PCC 

interpolation with 1P Keys kernel, an Experiment was carried out. In the experiment, the analysis of: a) the precision 

of the estimation of the fundamental frequency of the complex sine signal, and b) the speed (time) of the execution 

of the algorithms, was performed. Simulation Test signal, which was used to estimate the fundamental frequency f0, 

was generated according to (Milivojević et al., 2010): 
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where f0 is fundamental frequency, θi and ai are phase and amplitude of the i-th harmonic, K is the number of 

harmonics, M is the number of points between the two samples in spectrum. In the simulation process f0 is in the 

range of the k-th and (k+1) DFT spectral components, θi are random variables with uniform distribution in the range 

[0, 2π], fs is the sampling frequency, and N is the length, that is, the number of samples of the Test signal. As a 

measure of the precision of the estimation of the fundamental frequency f0, the objective MSE measure was used. In 

order to minimize the MSE, the kernel parameter α was optimized. MSE was calculated according to the following 

algorithm: 

 

Input: NDFT - number of spectral bins in which DFT is calculated, K - number of harmonics, M - number of 

components between two samples, ai - amplitude of the harmonic, and θi phase of the harmonic, KDFT - component 

of DFT, fs - sampling frequency, w - window function, (αl, αr) - limits of the range, Δα - step. 

Output: MSEq-SE , MSE1P_Keys  

Step 1: Frequency resolution Δf = fs / NDFT. 

 FOR α = αl, : Δα : αr  

   FOR f0 = KDFT ‧ Δf : Δf / M: (KDFT +1) ‧ Δf 

Step 2: Creation of Test signal x(t) according to eq. 7. 

Step 3: Modifikacija signala prozorskom funkcijom xw = x‧w. 

Step 4: Calculation of the spectrum using DFT in NDFT of frequency points:  ,w DFTX DFT x N . 

Step 5: Estimation of the fundamental frequency f0q-SE using the q-SE algorithm (Section 2.1)  

Step 6: Estimation error: 
0 _ 0 0f q SE q SEe f f    

Step 7: Estimation of the fundamental frequency f0_Keys using the PCC 1P Keys algorithm (Section 2.2).  

Step 8: Estimation error: 
0 _ 0 0_f Keys Keyse f f   

   END f0 

Step 8: Mean squared error of the q-SE algorithm for parameter α:  
0, _q SE f q SEMSE e   . 

Step 9: Mean squared error of the PCC 1P Keys algorithm for parameter α:  
0_ , _q Keys f KeysMSE e    

 END α 

Step 10: Mean squared error of the q-SE algorithm 
,q SE q SEMSE MSE   . 

Step 11: Mean squared error of the PCC 1P Keys algorithm  _ _ ,minq Keys q KeysMSE MSE  . 

The parameters used in the Experiment were: fS = 16 kHz, NDFT = 512, KDFT = 8, f0 = (125 - 140.625) Hz, K = 10, M 

= 100, ai = (0.98, 0.34, 0.2, 0.2, 0.34, 0.18 , 0.19, 0.2, 0.34, 0.1) V. The windows used are: a) Hamming, b) Hanning, 

c) Blackman, d) Boxcar, e) Kaiser, f) Triang, g) Gausswin, h) Bartlett, i) Bohmanwin, and j) Tukeywin. The 

described Experiment algorithm was implemented in Matlab. The speeds (time) of the fundamental frequency 

estimation algorithms (Step 5, Step 7), that is, the algorithm execution times (tKeys , tq-SE) were calculated using the 

toc and tic commands of Matlab. 5000 iterations were performed and the mean value of the execution time was 

determined. The Experiments were performed on a PC: Processor Intel(R) Pentium(R) CPU G3220 @3.00 GHz, 

RAM 8.00 GB, OS: Windows 10 Enterprise. The results are presented tabularly and graphically. Based on the 

results, a comparative analysis was performed. 

 

3.2. Results 

MSE values depending on the window function and alpha parameter for the Keys kernel, as well as for the q-SE 

algorithm, are shown in: a) fig. 2.a (Hamming), b) fig. 2.b (Hanning), c) fig. 2.c (Blackman), d) fig. 2.d (Boxcar), e) 

fig. 2.e (Kaiser), f) fig. 2.f (Triang), g) fig. 2.g (Gausswin), h) fig. 2.h (Bartlett), i) fig. 2.i (Bohmanwin), j) and fig. 

2.j (Tukeywin). Table 1 shows the optimal values of the kernel parameter αopt and minimum MSE for 1P Keys and 

q-SE algorithm, depending on window function. The results during the execution of the Step 5 (q-SE) and Step 7 

(1P Keys) are: tKeys = 4.7102  10-06 s, b) tq-SE = 1.108492262805  10-03 s.  
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Figure 2. MSE for window functions: a) Hamming, b) Hanning, c) Blackman, d) Boxcar, e) Kaiser, f) Triang, g) 

Gausswin, h) Bartlett, i) Bbohmanwin, and j) Tukeywin. 

 
a) 

 
b) 

 
c) 

 
d) 

 
e) 

 
f) 

 
g) 

 
h) 

 
i) 

 
j) 

 

Table 1. Optimum parameter αopt and minimum MSE for 1P Keys and q-SE algorithm, depending on window 

function. 

Window 1P Keys q-SE 

opt MSEmin_Keys MSEq-SE 

    

Hamming -1.0100 0.0089 1.5550 

Hanning -0.8800 6.4892ּּּּ‧10-04 4.1367 

Blackman -0.8000 4.4867‧10-04 9.8445 

Boxcar -2.6400 0.1828 0.2333 

Kaiser -1.1300 0.0053 0.4614 

Triang -1.0300 0.0014 1.3286 

Gausswin -0.9700 0.0043 2.8212 

Bartlett -1.0200 0.0015 1.3642 

Bohmanwin -0.7800 3.9373‧10-04 11.6464 

Tukeywin -1.3600 0.0255 0.2311 

  
1 _P KeysMSE =0.0231  

q SEMSE 
= 3.3622 

 

3.3. Analysis of results 

Based on the results shown in fig. 2 and Table 1, it is concluded that: 

1. Compared to the estimation error of the fundamental frequency by the q-SE algorithm (MSEq-SE), the estimation 

error of PCC interpolation with the implemented 1P Keys kernel (MSEmin_Keys), using window functions, is smaller: 

a) Hamming MSEq-SE / MSEmin_Keys = 1.5550 / 0.0089 = 174.71, b) Hanning 4.1367 / 6.4892ּּּּ‧10-04 = 6374.74, c) 

Blackman 9.8445 / 4.4867‧10-04 = 21941.51, d) Boxcar 0.2333 / 0.1828 = 1.27, e) Kaiser 0.4614 / 0.0053 = 87.05, f) 

Triang 1.3286 / 0.0014 = 949.00, g) Gausswin 2.8212 / 0.0043 = 656.09, h) Bartlett 1.3642 / 0.0015 = 909.46, i) 

Bohmanwin 11.6464 / 3.9373‧10-04 = 2.9579.66, and j) Tukeywin 0.2311 / 0.0255 = 9.06, times. 

2. The smallest error when applying the 1P Keys kernel is with the Bohmanwin window function (MSEmin_ Bohmanwin 

= 3.9373‧10-04). The smallest error when applying q-SE is with Tukeywin window function (MSEmin_ Tukeywin = 

0.2311), so the precision is higher MSEmin_ Tukeywin / MSEmin_ Bohmanwin = 586.9504 times. 

3. The mean value of the errors MSE is higher with q-SE 
q SEMSE 

 / 
1 _P KeysMSE  = 3.3622 / 0.0231 = 145.4311 

times.  

4. The ratio of speeds, that is execution time, is greater with q-SE RateTime = tq-SE / tKeys = 1.1084  10-03 / 4.71  10-06 

= 235.33 times. 

Based on the conducted comparative analysis, it is concluded that the estimation of the fundamental frequency of the 

complex sine signal using PCC interpolation with the implemented 1P Keys kernel, is more accurate compared to 

the application of the q-SE algorithm, and that the algorithm is executed faster. Based on the derived conclusion, the 

application of the PCC interpolation algorithm with the implemented 1P Keys kernel in Real-time systems is 

recommended. 
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4. CONCLUSIONS 

In this paper, the efficiency of estimating the fundamental frequency of complex sinusoidal signal, using q-SE and 

PCC algorithm with implemented 1P Keys kernel, is done. Efficiency was evaluated based on the precision of the 

estimation of frequency and the time execution of the algorithms. For this purpose, the Experiment was carried out. 

A detailed comparative analysis of the results of the Experiment show that the PCC algorithm with the implemented 

1P Keys kernel has a higher precision 145.4311 times. In addition, the time execution of the PCC algorithm is 

235.33 times lower. Based on the presented results and the conducted comparative analysis, the application of PCC 

algorithm with 1P Keys kernel in Real-time systems is recommended. 
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