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Abstract:  The efficiency of the operator   performing mass passenger transport services, from one side, depends  on  

the usage of the service by passengers and from other side - from the optimal planning of the vehicles,  moving on 

the route line. The schedule and spaces of movement of every bus is pre-set. This study investigates only the 

optimization of the number of rolling stock traveling on fixed routes of urban passenger transport. The problem to be 

solved by the determining of the optimal distribution of vehicles, performing all trips on a given line with a fixed 

schedule, is in their correct planning. The travel chain is designed for all vehicles running on the line. The planning 

of the vehicles in the urban passenger transport is based on their distribution in the hours of the day and as a result is 

determined the type of them, arranged in descending order according to their expenses. In  the public transport, the  

schedule  of  vehicle necessary  t o meet  the  needs  of  passengers,  as well as to increase their number by the using 

of this service. In order to achieve optimality of the fixed schedules, there may be empty trips to the place of stay of 

the vehicles, as the departure times and stops along the route cannot be changed.  The study aims to suggest a 

technique easy for implementation, to meets the practical problems and leads to optimization of traffic on the line 

from mass passenger transport in one direction. The achievement of it, need to define minimum number of vehicles, 

optimal for the route is determined. The described model is a step function, called the deficit-function, with the 

introduction of vehicle traffic control along a predetermined schedule and shows such optimization. For creation of 

set of deficit-functions,   information needed is a schedule of the exact number of the trip.  As a result, capital 

spending for vehicles is significantly lower than such for fuel, repair and maintenance of rolling stock decrese, as 

well as the number of drivers optimal. And as a final result, the company increases its profitable. 
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1. INTRODUCTION  

The operation planning process commonly includes four basic activities, usually performed in sequence: (1) network 

route design, (2) timetable development, (3) vehicle scheduling, and (4) crew scheduling. The output of each activity 

positioned  higher in the sequence becomes an important input for lower-level decisions. However it is desirable for 

all four activities to be planned simultaneously in order to exploit the system’s capability to the greatest extent and 

to maximize the system’s productivity and efficiency. In fixed schedules, departure times cannot be changed. A 

method to construct timetables with the combination of both even-headway and even-load concepts is developed for 

multi-vehicle sizes. The scheduling problem is based on given sets of trips and vehicle types arranged in decreasing 

order of vehicle cost. The vehicle-scheduling activity  is aimed at creating chains of trips; each is referred to as a 

vehicle schedule according to given timetables. This chaining process is often called vehicle blocking (a block is a 

sequence of revenue and non-revenue activities for an individual vehicle). A trip can be planned either to transport 

passengers along its route or to make a deadheading trip in order to connect two service trips efficiently. 

This research has the aim to proffer a graphical technique that is easy to interact with and responds to practical 

concerns.  It contains two main parts following an introductory section, and a literature review section. First, a 

formula is derived to find the minimum fleet size required for a single route without deadheading (DH) trips and for 

a fixed schedule. Second, a graphical  person-computer interactive approach, based on a step function called deficit 

function, is proffered for minimizing single-route fleet size and creating vehicle schedules with DH trip insertions. 

 

2.  LITERATURE REVIEW 

The group of studies that are related directly to vehicle scheduling, was researched by, for example, Dell Amico et 

al. (1993), Löbel (1998, 1999), Mesquita and Paixao (1999), Banihashemi and Haghani (2000), Freling et al. (2001), 

Haghani and Banihashemi (2002), Haghani et al. (2003), and Huisman et al. (2004). 

Dell Amico et al. (1993) developed several heuristic formulations, based on a shortest-path problem, that seek to 

minimize the number of required vehicles in a multiple-depot schedule. The algorithm presented is performed in 

stages, in each of  them the duty of a new vehicle is determined. In each such stage, a set of forbidden arcs is 

defined, and then a feasible circuit through the network is sought that does not use any of the forbidden arcs.  

Löbel (1998, 1999) discussed the multiple-depot vehicle scheduling problem and its relaxation into a linear 

programming formulation that can be tackled using the branch-and-cut method. A special multi-commodity flow 

formulation is presented, which, unlike most other such formulations, is not arc-oriented. A column-generation 

solution technique is developed, called Lagrangean pricing; it is based on two different Lagrangean relaxations. 
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Heuristics are used within the procedure to determine the upper and lower bounds of the solution, but the final 

solution is proved to be the real optimum. 

Mesquita and Paixao (1999) used a tree-search procedure, based on a multi-commodity network flow formulation, to 

obtain an exact solution for the multi-depot vehicle scheduling problem. The methodology employs two different 

types of decision variables. The first type describes connections between trips in order to obtain the vehicle blocks, 

and the other relates to the assignment of trips to depots. The procedure includes creating a more compact, 

multicommodity network flow formulation that contains just one type of variables and a smaller amount of 

constraints, which are then solved using a branch-and-bound algorithm.  

Banihashemi and Haghani (2000) and Haghani and Banihashemi (2002) focused on the solvability of real-world, 

large-scale, multiple-depot vehicle scheduling problems. The case presented includes additional constraints on route 

time in order to account for realistic operational restrictions such as fuel consumption. The authors proposed a 

formulation of the problem and the constraints, as well as an exact solution algorithm. 

Freling et al. (2001) discussed the case of single-depot with identical vehicles, concentrating on quasi-assignment 

formulations and auction algorithms. 

Haghani et al. (2003) compared three vehicle scheduling models: one multiple-depot (presented  by Banihashemi 

and Haghani, 2002) and  two single-depot formulations which are special cases of the multiple-depot problem. The 

analysis showed  that a single-depot vehicle scheduling model performed better under certain conditions. 

Huisman et al. (2004) proposed a dynamic formulation of the multi-depot vehicle scheduling problem. The 

traditional, static vehicle scheduling problem assumes that travel times are a fixed input that enters the solution 

procedure only once; the dynamic formulation relaxes this assumption by solving a sequence of optimization 

problems for shorter periods. 

 

3. FLEET SIZE REQUIRED FOR A SINGLE ROUTE 

Here considers a case in which interlinings and deadheading (DH) trips are not allowed and each route operates 

separately.  Let Tr be the average round-trip time, including layover and turn-around times, of a radial route r 

(departure and arrival points are same). The minimum fleet size is equal to the largest number of vehicles that 

departs within Tr. 

Although Salzborn's  model provides the base for fleet-size calculation, it relies on three assumptions that do not 

hold up in practice: (i) vehicle-departure rate is a continuous function of  time, (ii) Tr is the same throughout the 

period under consideration, and (iii) route r is a radial route starting at a major point (e.g., CBD). In practice, 

departure times are discrete, average trip time is usually dependent on time-of-day, and a single transit route usually 

has different timetables for each direction of travel. For that reason, this section broadens Salzborn's model to 

account for practical operations planning. 

 

4.   DEFICIT-FUNCTION MODEL WITH DEAD-HEADING TRIP  
The minimum-fleet-size problem may be approached with and without DH trips. A DH trip is an empty trip between 

two terminuses and is usually inserted into the schedule (i)  to ensure that the schedule is balanced at the start and 

end of  the day and (ii) to transfer a vehicle from one terminal where it is not needed to another where it is needed to 

service a required trip. 

4.1 Definitions and Minimum Fleet Size 

 Let I = {i: i = l, ..., n} denote a set of required trips. The trips are conducted between a set of terminals K = {k: k = l, 

…,q}, each trip to be serviced by a single vehicle, and each vehicle able to service any trip. Each trip i can  be 

represented as a 4-tuple (        
             

 ), in which the ordered elements denote departure terminal, departure (start) 

time, arrival terminal, and arrival (end) time. It is assumed that each trip i lies within a schedule horizon [T1, T2]  

i.e., T1≤   
  ≤   

  ≤ T2. The set of all trips S =   (        
             

 ) :   ,      ϵ K , i ϵ I } constitutes  the timetable. Two 

trips i, j may be serviced sequentially (feasibly joined) by the same vehicle if and only  if (a)    
  ≤   

 
 and  (b)    = 

  . 

If  i is feasibly joined to  j, then i is said to be the predecessor of  j, and  j the successor of  i. A sequence of  trips i1, 

i2,…, iw ordered in such a way that each adjacent pair of trips satisfies (a) and  (b) is called a chain or block. It 

follows that a chain is a set of trips that can be serviced by a single vehicle. A set of chains in which each trip i is 

included in I exactly once is said to constitute a vehicle schedule. The problem of finding the minimum number of 

chains for a fixed schedule S is defined as the minimum fleet- size problem. 

Let us define a DH trip as an empty trip from some terminal p to some terminal q in time τ(p,q). If it is permissible 

to introduce DH trips into the schedule, then conditions (a) and (b) for  the feasible joining of  two trips, i, j, may be 

replaced by the following: 
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  + τ (   ,     ) ≤   

 
                                                                                                                                                (1) 

 

 Let us introduce a deficit-function-based   model. 

4.2   Deficit-Function Model 

A deficit function (DF) is a step function defined across the schedule horizon  increases  by one at the time of each  

trip departure and decreases by one at  the time of each trip arrival. This step function  is called a deficit function 

(DF) because  it represents the deficit number of vehicles,  required at a particular terminal in a multi-terminal 

transit system. To construct a set of DFs, the only information needed  is a timetable of required trips. The main 

advantage of the DF is its visual nature. Let d(k,t,S) denote the DF for terminal  k at time t for schedule S. The value 

of d(k,t,S) represents the total  number of departures minus the total number of trip arrivals at terminal  k, up to and 

including time t. The maximum value of d(k,t,S) over the schedule  horizon [T1, T2], designated D(k,S), depicts the 

deficit number of vehicles required at  k.  

The DF notations are presented in Figure 1 below, in which [T1, T2] = [5:00, 8:30]. It  is possible to partition the 

schedule horizon of d(k,t) into a sequence of alternating hollow and  maximum  intervals  (   
 ,   

 ,   
 ,…,   

 , 

    
 ,  ( )

 ,  

  ( )
  ). Note that S will be deleted when it is clear  which underlying schedule is being considered. Maximum 

intervals    
 = [    ,   

 ], j = 1, 2,..., n(k)  define the intervals of time over which d(k,t) takes on its maximum 

value. Index  j  represents the  j-th maximum intervals from  the left; n(k) represents the total number of  maximal  

intervals in d(k,t), where   
   is the departure time for a trip leaving terminal  k and    

  is the time of arrival at 

terminal k for this trip. The one exception occurs when the DF  reaches its maximum value at    
  and  is not 

followed by an arrival,  in which case    
 = T2. 

A hollow interval     
 ,  j = 0,1,2,…,n(k) is defined as the interval between two maximum times: this includes the 

first hollow, from T1 to the first maximum interval,    
  = [T1,   

 ];  and  the  last  hollow, which is from the last 

interval  to T2,   ( )
  = [   ( )

 , T2]. Hollows may contain  only one point; if this case is not on the schedule horizon 

boundaries (T1 or T2),  the graphical  representation of d(k,t) is emphasized  by a clear dot. 

The sum of all DFs over k is defined as the overall DF, g(t)  ∑  (   )   . This function g(t) represents the number 

of trips that are simultaneously in operation; i.e., a count, from a bird’s-eye view at time t, of the number of  vehicles 

in actual  service over the entire transit network of routes. The maximum value of g(t), G(S), is exploited for a 

determination of the lower bound on the fleet size. An example of a two-terminal operation, a fixed schedule of 

trips, and the corresponding set of  DFs and notations is illustrated in Figure 2. 

Determining the minimum fleet size, D(S), from the set of DFs is simple enough - one merely adds  up the deficits 

of all the terminals. In the example in Figure 1below  without DH trips, D(S) = D(a) + D(b). 

When Fk = the number of vehicles present in terminal  k at the start of the schedule horizon T1; let s(k, t) and e(k, t) 

be the cumulative number of  trips starting and ending at  k from T1 up to and including time t. The number  of 

vehicles remaining at k  at  time t ≥ T1 is Fk - s(k, t) + e(k, t). 

In order to service all  trips leaving  k, the above expression must  be non-negative; i.e., Fk ≥ s(k, t) - e(k, t), T1 ≤ t ≤ 

T2. The minimum number of vehicles required at  k is then equal to the maximum deficit at  k. Min Fk = Maxt [s(k, t) 

- e(k, t)] = Maxt d(k, t). Therefore, the minimum number of vehicles required for all terminals in the system is equal 

to the total deficit 

 

Min N = ∑         =∑  ( )      D(S)                                                                                                                   

(2) 

 

or 

 
Min N = ∑  ( )    = ∑     (   )         

    

                                                                                                                                  (3)                                                                                      

 

4.3 DH Trip Insertion 

A DH trip is an empty trip between the ends of a single route. Always, a trip schedule received from operating 

personnel includes such deadheading trips, and it is easy to apply the fleet-size formula to determine the minimum 

fleet size, followed by the first in-first out rule to construct each vehicle's schedule. The assumption is that the trip 
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schedule S has been purged of all DH trips, leaving only required trips. From this point, the question of how to insert 

deadheading trips into the schedule in order to further reduce the fleet size will be examined. At first, it seems 

counterintuitive it can be achieved, since it implies that increased work (adding trips to the schedule) can be carried 

out with decreased resources (fewer vehicles). This section will show through an examination of the effect of such 

deadheading trip insertions on deficit functions that it is indeed possible. When given configuration, according   to 

the fleet-size formula, five vehicles are required at terminal a, and six at terminal b for a fleet size of eleven.  After 

the introduction of this DH trip into the schedule, the net effect is a reduction in fleet size by one unit at terminal b. 

Ceder (2002, 2003) shows that a chain of DH trips may be required for the reductionof the fleet size by one. All 

successful DH trip chains follow a common pattern. The initial DH trip is introduced to arrive in the first hollow of a 

terminal in which a reduction is desired. This DH trip must depart from some hollow of another terminal. Moving to 

the end of this hollow, another DH trip is inserted, such that its arrival epoch will compensate for the departure 

epoch added by the first DH trip. This is followed by additional compensating trips; however, in order to avoid 

looping, no more than one DH trip will be allowed to depart from the same empty. Each time a DH trip is inserted 

(from  p to q) to arrive at the end of a hollow    
  from the start of a hollow   

 
, it must pass a feasibility test; i.e., 

  
 
+  (p.q)       

 . If the inequality is true with smaller, then there will be some slack time, during which the DH trip 

can be shifted. Let this slack time be defined  as     =     
  – [  

 
+   (p.q)]. In practice, if the DH time plus the slack 

time are greate r than or equal to the average service travel time, then a service trip may replace the DH trip. In this 

way, an additional service trip is introduced, thereby resulting in higher frequency (i.e., an improved level of 

service) at usually the same operational cost. 

The process ends when a final hollow of some terminal q is reached (i.e.,    
 
 =   ( )

 ), after which no 

compensation is necessary. It is possible to arrive at a point where no feasible compensating DH trips can be 

inserted, in which case the procedure terminates or one may back track to the arrival point of the last DH trip added 

and try to replace it with another. This procedure results in a sequence of DH trips known as a unit reduction dead-

heading chain (URDHC) if it ends successfully (i.e., if it reduces the fleet size by a unit amount). Clearly, the 

continued reward for such a search must stop, and the Lower Bound Theorem (Ceder, 2002) provides a condition 

when it is futile to continue this search; this lower bound is based on the sum of DFs, g(t), and its maximum value 

G(S). 

 

Fig. 1: Illustration of two-terminal fixed schedule with associated deficit functions and their sum, including 

notations and definitions 
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5.  CONCLUSION 

This study examined the effect of vehicle planning on an urban passenger transport line with a fixed schedule. In the 

model described above, two variants of optimizing the number of rolling stock are considered. In the research  

is showns that the minimum-fleet-size problem may  be  approached  with and  without DH trip. In the case of no 

deadheading (DH) trips, departures must be performed by different vehicles at both final stops. In case there are no 

entanglements (between the routes) and there are no trips with DH, the minimum the size of the fleet required for the 

route is the maximum departing from the final bus stops. A small amount of shifting in scheduled departure times 

becomes almost common in practice when attempting to minimize fleet size or the number of vehicles required. A 

common practice in vehicle scheduling is to use time-space diagrams. Each  line in the diagram  represents a trip 

moving over time (x-axis). Although many schedulers became accustomed to this description, it is cumbersome, if 

not impossible, to use these diagrams to make changes and improvements in the scheduling. It is also difficult to use 

different average speeds for different route segments, in which the lines in the time-space diagram can cross one 

another; this is not to mention the inconvenience of using these diagrams manually for inserting deadheading trips 

and/or shifting departure times. These limitations of the time-space diagram caused us to look more closely into 

more appealing approaches – those that are presented in this research. 

In practical single-route transit-vehicle scheduling, schedulers should attempt to allocate vehicles in the most 

efficient manner possible, including the insertion of deadheading (DH) trips and the employment of small shifts in 

departure times. Moreover, some DH trip insertions are combined with small shifts in the departure times to allow 

these insertions; thus, reducing the fleet size and vehicle cost required. Finally, it is believed that prudent usage of 

vehicles by the consideration of different can  support making the need for travel more economical and saving  

resources. 
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