CREATING GEOMETRIC SHAPES IN AUTODESK INVENTOR USING OF BORN (BASE ORPHAN REFERENCE NODE) TECHNIQUE

Nebojsa J. Dimitrijevic
College of Applied Professional Studies, Vranje, Serbia, nebojsa.j.dimitrijevic@gmail.com

Abstract

The basic concept of BORN (Base Orphan Reference Node) technique is the use of a Cartesian coordinate system as a first shape, which preceded the creation of any geometrical shape. After the establishment a Cartesian coordinate system, are obtained by three mutually normal working plane (XY, YZ and ZX), which can be used as a sketching plane, three working axes (X, Y, and Z) and a working point (the origin). Three working planes are used as a reference for dimensions and geometric constructions. Autodesk Inventor automatically adjust set of reference geometry, which consists of three working-plane, three working axes and the origin when we begin to create a new part. All of the following geometric shapes can be used by the coordinate system and / or reference geometry as sketching plane.

Keywords: Autodesk Inventor, BORN technique, geometric shape

1. STARTING AUTODESK INVENTOR

Autodesk Inventor can be started in several ways. For most Windows systems Autodesk Inventor can run in the Start menu: All Programs / Autodesk / Autodesk Inventor / Autodesk Inventor Professional. It is also possible to access the program using the icon on the Desktop.

After starting the program appears the standard Autodesk Inventor screen drawing, shown on Figure 1, which contains the Application menu, Quick Access toolbar, tabs Get Started, Tools and Vault, with accompanying toolbars, Browser, Area for drawing and Status bar.

Figure 1. Autodesk Inventor drawing screen
On the tab Get Started, on the toolbar Launch, select command New to activate it. In the dialog box New File, select tab Metric, and then select the field for selecting the icon with the name Standard (mm).ipt. To accept settings click on the button OK.
2. SETTING SKETCHING PLANE

On the tab Tools, Figure 2, on the tool palette Options, select command Application Options.

Figure 2. Tools tab

KNOWLEDGE - International Journal
 Vol. 28.4
 December, 2018

Application Options			
General	Save	File	C
Notebook	1		Part
Sketch on new part creation © No new sketch C sketch on x - y plane C sketch on y-z plane C sketch on $x-z$ plane			

Figure 3. A dialog box Application Options

Figure 4. Option Visibility

In the dialog box Application Options, Figure 3, select the tab Part, in order to modify the default settings of sketching plane. In section Sketch on new part creation select the radio button next to option No new sketch. To accept the selected settings select the button Apply.

On the tab Get Started, on the toolbar Launch, select command New. In the dialog box New File, select tab Metric, and then, in the field for selecting, select the icon with the name Standard (mm).ipt. Confirm the selection by clicking OK.

On the tab Model, Figure 5, on the palette Sketch, single click the left mouse button select the command Create 2D Sketch.

Figure 5. Model tab
In the Model browser move the cursor to the work plane XZ Plane, it becomes marked in the drawing. In order to select the $\mathbf{X Z}$ plane, as the drawing plane, click the left mouse button once on it.

On the tab Sketch, Figure 6, on the toolbar Draw, click once with the left mouse button on command Project Geometry to activate it.

Figure 6. Sketch tab
In the Model browser move the cursor to the origin Center Point, it becomes marked in the drawing. To project Center Point on the sketching plane click the left mouse button once on it.

3. CREATE 2D SKETCH OF THE BASIC SHAPE WITH COMMAND RECTANGLE TWO POINT

Figure 7. Creating a rectangle

On the tab Sketch, on the toolbar Draw, click once with the left mouse button on command Rectangle Two Point to activate it.

Draw a rectangle of arbitrary size, where the projected origin should be located in the rectangle, see figure 7.

On the tab Sketch, on the toolbar Constrain, click once with the left mouse button on command Dimension to activate it.

Create dimensions, in order to fully constrain the drawing, as shown in Figure 7.
Rounding the vertices of the rectangle with command 2D Fillet

Figure 8. Rounding vertices

On the tab Sketch, on the toolbar Draw, click once with the left mouse button on command Fillet to activate it.

Appears dialog box 2D Fillet, in which, in the input field, should be defined the numerical value of the radius of rounding.

2D Fillet x

With the left mouse button select all four vertices of a rectangle. Autodesk Inventor automatically sizing the radius of rounding, see Figure 8.

To complete sketch, with left mouse button select command Finish Sketch on the tab Sketch.

4. CREATE THE FIRST FORM WITH COMMAND EXTRUDE

İn the tab Model, on the toolbar Create, click once with the left mouse button on command Extrude to activate it.

In the dialog box Extrude, Figure 9, the card Shape is active.

Figure 9. Dialog box Extrude

Figure 10. First extrude form

Sketche area is automatically selects as a profile for extrude, because it is the only choice.
Operation New solid is active, which means it will be created a new solid. In the field Extents, from the drop-down list, is selected option Distance. In the input field enter: $\mathbf{1 5}$ for size of the extrude. Select the positive direction of the extrude To exit from dialog box Extrude, select OK.

KNOWLEDGE - International Journal
 Vol. 28.4
 December, 2018

Figure 10 shows a geometric shape obtained by using command Extrude.

5. CREATING A HOLE

On the tab Model, on the toolbar Modify, click once with the left mouse button on command Hole to activate it.

In the dialog box Hole, shown in Figure 11, in the field Placement select, from the drop-down list, option: Linear.

Figure 11. The dialog box Hole

Figure 12. Creating a hole

In the field Placement, button Face is selected. Click once with the left mouse button on the upper horizontal surface of the first geometric form, in order to select it.

In the dialog box Hole, select button the upper surface of the first horizontal geometrical shapes to select it. In the dialog box Hole, select button
\square Reference 2
. Click the left mouse button once on the short edge on the upper surface of the first horizontal geometrical shapes to select it, see Figure 12. In the field for the tip hole select radio button in front of the option Simple Hole ○处管 , which selects the standard tip hole. In the field Termination, from the drop-down list, choose the option: Through All. Select a radio button for option Counterbored \square Define dimensions for this type of hole. To accept settings and execute the command select the button Apply. To exit from the dialog box Hole choose the button Done.

6. DUPLICATE HOLE WITH COMMAND RECTANGULAR PATTERN

On the tab Model, on the toolbar Pattern, click once with the left mouse button on the command Rectangular Pattern to activate it. In the dialog box Rectangular Pattern, shown in Figure 13, the button Features is selected.

Figure 13. The dialog box Rectangular Pattern

Figure 14. Creating duplicate hole

Click once with the left mouse button on the geometric shape Hole1 to select it. In the field Direction 1, select the icon. Click the left mouse button once on the long edge to the upper horizontal surface of the first geometric shape Extrusion1. In the entry field behind the icons Count ${ }^{\circ \bullet 0}$ specify the number of times to copy the selected geometric shapes in rows, enter: 2. In the entry field behind the icons Length \diamond specify how much would be the distance between the duplicate geometric shapes in rows, enter: 60. In the field Direction 2 select the icon Δ. Click the left mouse button once on the short edge on the upper horizontal surface of the first geometric shape Extrusion1. In the entry field behind the icons Count \AA specify the number of times to copy the selected geometric shape of the columns, enter: 2. In the entry field behind the icons Length \diamond specify how much would be the distance between the duplicate geometric shapes in columns, enter: 40. To accept settings and perform command Rectangular Pattern select button OK. On Figure 14 are shown the geometrical shapes obtained by duplicating the selected shape.

7. ROUNDING THE EDGES WITH COMMAND FILLET

On the tab Model, on the toolbar Modify, click once with the left mouse button on command Fillet to activate it. In the dialog box Fillet, shown in Figure 15, icon Edge Fillet is active.

On the card Constant Constant, in the entry field Radius enter the radius of rounding: 4 mm . In the field Select mode, select the radio button in front of the option Edge. Click once with the left mouse button on all the edges on the upper horizontal surface of the first geometric shape Extrusion 1. In the field Edges is shown the number of selected edges. To accept settings and execute the command select the button Apply.

To exit from the dialog box Fillet, select button Cancel. In Figure 16 is shown a appearance of geometrical form which is prepared using the commands Fillet.

Figure 15. The dialog box Fillet

Slika16. Creating a fillet

8. SELECTION OF WORKING PLANE YZ AS DRAWING PLANE

On the tab Model, on the toolbar Sketch, a single click the left mouse button select the command Create 2D Sketch.

In the Model browser, move the cursor to the working plane YZ Plane, it becomes marked in the drawing. In order to select the YZ Plane as drawing plane one click the left mouse button on it.

Project the origin and the Y-axis to the active drawing plane

On the tab Sketch, on the toolbar Draw, click once with the left mouse button on the command Project Geometry to activate it. In the Model browser move the cursor to Center Point. To be projected Center Point to the sketching plane click the left mouse button once on it. Then move the cursor to the \mathbf{Y} Axis. In order to be projected \mathbf{Y} Axis to the sketching plane click the left mouse button once on it.

KNOWLEDGE - International Journal

Vol. 28.4
December, 2018

9. CREATING OF OPENED REGION WITH COMMAND LINE

Figure 17. Creating an open region

On the tab Sketch, on the toolbar Draw, click once with the left mouse button on the command Line to activate it.

Complete sketch with command Line so as to be create open region shown in Figure 17.

10. CREATION OF CLOSED REGION WITH COMMAND MIRROR

On the tab Sketch, on the toolbar Pattern, click once with the left mouse button on the command Mirror to activate it.

Figure 18. The dialog box Mirror

In the dialog box Mirror, shown in Figure 18, the icon
Select is active. Select the open region created with the command Line, Figure 19.

In the dialog box Mirror, select the icon Mirror line.
Select the \mathbf{Y} axis, which had previously been projected to the active sketch plane, Figure 19.

To accept settings and execute the command select the button Apply. To exit from the dialog box Mirror choose the button Done. In Figure 20 is shown closed profile created with commands Line and Mirror.

On the tab Sketch, on the toolbar Constrain, click once with the left mouse button on the command Dimension to activate it. Create dimensions on the closed profile as shown in Figure 20.

To complete the sketch select left-click on command Finish Sketch.

Figure 19. Selecting the region and the axis

Figure 20 Closed region with dimensions

11. CREATING THE SECOND EXTRUDE FORM

Figure 21. The dialog box Extrude

On the tab Model, on the toolbar Create, click once with the left mouse button on the command Extrude to activate it.

In the dialog box Extrude, shown in Figure 21, the card Shape is active, while the button A Profile is active.

Select a shape as shown on Figure 22.

On the palette of operation, button Join is active, so that it will get shape to be connected with an existing geometric shape. In the field Extents, is selected, from the drop-down list, options Distance. In the input field enter: 15 for size of the extrude.

Select the icon Mid plane Δ, extrude of equal value on both sides of the selected profile. To exit the dialog box Extrude, select OK. In Figure 23 shows the geometry shape after command Extrude.

Figure 22. Selecting a profile for extrude

Figure 23. Second extrude form

12. SELECTION OF YZ PLANE AS PLANE OF THIRD EXTRUDE FORM

On the tab Model, on the toolbar Sketch, a single click the left mouse button select the command Create 2D Sketch. In the Model browser move the cursor to the YZ Plane. In order to select the YZ Plane as drawing plane one click the left mouse button on it.

On the tab Sketch, on the toolbar Draw, click once with the left mouse button on the command Project Geometry to activate it. In the Model browser move the cursor to Center Point. To be projected Center Point on the sketching plane click the left mouse button once on it. Then move the cursor to the \mathbf{Y} Axis. In order to be projected Y Axis on the sketching plane click the left mouse button once on it.

13. CREATING THE CIRCULAR SHAPE WITH COMMAND CIRCLE

Figure 24. The circular shape

14. CREATING THE THIRD EXTRUDE FORM

On the tab Model, on the toolbar Create, click once with the left mouse button on the command Extrude to activate it.

In the dialog box Extrude, shown in Figure 25, the card Shape is active, while the button Profile is pressed. Select a geometric shape as shown in Figure 26.

KNOWLEDGE - International Journal

Vol. 28.4
December, 2018

Extrude X		
Shape More		
		Extents
4 Profie		Distance \quad -
Q Solids	界	$50 \mathrm{~mm}>$
Output		D \triangle
(1)	(6)	\square match shape
(圆)		ok Cancel

In the field of operation, button Join is active, so you will get extrude shape to be connected to the existing geometric shape.

In the field Extents, is selected, from the dropdown list, option Distance.

In the input field enter: 50 for size of the extrude.

Select the icon Δ, extrude of equal value on
Figure 25. The dialog box Extrude
To exit from the dialog box Extrude, select the button OK.
Obtained geometric shape is shown in Figure 27.

Figure 26. Selecting a profile for extrude

Slika 27. Third extrude form

15. CONCLUSION

This paper presents BORN (Base Orphan Reference Node) technique for creating geometric shapes in the software package Autodesk Inventor.
It has been shown that the basic geometric shape is not the only option for selecting the sketching plane of geometric shapes.
The three working plane (XY, YZ and ZX plane) can be used as sketching plane.
This approach offers more options for creating parametric models, as well as greater flexibility in the modification of parts and changes of design.

REFERENCES

[1] N. J. Dimitrijević, Z. V. Janić, N. V. Janić, "Zbirka zadataka iz CAD-a (Autodesk Inventor)", Visoka škola primenjenih strukovnih studija, Vranje, 2012.
[2] N. Dimitrijević, Z. Janjić, N. Janjić, D. Nikolić, "Modelovanje simetričnih geometriskih oblika i konstrukciona geometrija u Autodesk Inventoru", XXXV konferencija "Poslovnih komunikacija i proizvodnog inženjerstva", Jun 01-02, Vrnjačka Banja, Srbija, str. 49-57, 2012.
[3] N. Dimitrijević, N. Janjić, Z. Janjić, D. Nikolić, "Kreiranje šablona crteža i radioničkog crteža, definisanje okvira i zaglavlja, asocijativna funkcionalnost u Autodesk Inventoru", XXXV konferencija "Poslovnih komunikacija i proizvodnog inženjerstva", Jun 01-02, Vrnjačka Banja, Srbija, str. 39-48, 2012.
[4] N. Dimitrijević, Janjić N., Janjić Z., D. Nikolić, "Modelovanje sklopa, primena ograničenja na delove sklopa, promena dizajna komponenata sklopa i eksplodovan prikaz sklopa u Autodesk Inventoru", Tehnička dijagnostika 1-2, str. 94-99, 2012.
[5] N. Dimitrijević, D. Nikolić, N. Janjić, "Generisanje radioničkog crteža i asocijativna funkcionalnost u Autodesk Inventoru", Menadžment znanja 3-4, str. 10-17, 2011.
[6] Shih R., "Autodesk Inventor - Parametrijsko modeliranje", Svetlost Čačak, 2007.

