FINANCIAL SYSTEM DEVELOPMENT AND ECONOMIC GROWTH IN THE EASTERN EUROPEAN COUNTRIES

Radica Dishlieska

FON University – Skopje, Republic of Macedonia, <u>radica.dishlieska@fon.edu.mk</u> Blagoja Spirkoski

FON University – Skopje, Republic of Macedonia, <u>bspirkoski@yahoo.com</u>

Abstract: Economic theory suggests that an efficient financial system which channels capital to its most productive uses creates an advantageous climate for economic growth. Sound and efficient financial system is important for sustaining growth in developing Eastern European countries, because efficiency of investment will overshadow quantity of investment as a driver of growth in the region. Therefore, this paper examines the possible causal relationship between financial sector development and economic growth among Eastern European countries. Theoretical aspect points to presence of complex relationship between the financial system development and economic growth. Empirical evidence depends on the time period analyzed as well as the sub-samples of the possible correlation of the financial development with economic growth, which can be positive or negative. The annual data used indicate that the causality in Granger sense of this process can run one way or another, depending on the country in question.

Keywords: financial system, financial development, Granger causality test, economic growth

1. INTRODUCTION

The main objective of this paper is to perform an analysis in order to examine the potential relationship between financial system diversity and economic growth in the sample of Eastern European countries. To reach the specific purpose, the subsequent steps have to be taken: first, an analysis of the theoretical relationship between development of diversified financial sector and economic growth; second, empirical projection of the theoretical relationship.

According to Levine (2005), financial institutions and markets can promote economic growth through particular channels: (1) facilitation of the exchange of goods and services through decreasing provision of payment; (2) creating the pool of disposable savings from significant number of different investors; (3) using the savings of the enterprises for the realization of the most productive investment projects; (4) monitoring investment and implementation of corporate governance, and (5) diversification through increasing liquidity and decreasing intertemporal risk. Therefore, those functions have significant impact on savings and investment decisions and correspondingly to economic growth.

International capital inflows promote financial deeping through higher demand for financial services, which presents valuable instrument for financial sector development.

The key factors of permanently increasing depth of the internal financial sector in Eastern European countries are the following:

- Increased level of financial liberalization started in the late 1990s accompanied by the macroeconomic stabilization in EEC.
- Substantial foreign capital inflows due to continuous low domestic capital.
- Replacement of the weak legal and institutional financial sector infrastructure with enhanced legal framework which enables increased efficiency of the financial system in order to stimulate the financial deeping.
- Rising competion among internal commercial banks.
- Softening conditions in monetary policy as a cause for decreasing domestic interest rates.
- Sound and stable macroeconomic policies in order to enable long term growth of the financial sector.

In the study we examine the key aspects of the financial system diversity in eight EEC in the period 1995-2015 using vector error correction model. In order to achieve this goal we conduct a multivariate cointegration methodology established by Johansen (1988, 1991) as well as Johansen and Juselius (1990) to evaluate the relationships between financial system indicators and real output in the selected group of EEC. In addition, we test the time series in the period 1995-2015 to determine unit root presence in order to show integration of internal

variables. Finally, for non-stationary series with a cointegrating relationship, the ,Granger-causality test has been applied, after the construction of vector error correction model (VECM).

2. THEORETICAL FRAMEWORK

Many studies have confirmed that the relationship between financial system development and economic growth is a controversial issue. Some economists, like Goldsmith (1969) and McKinnon (1973) emphasized the significant benefits of financial sector development and financial liberalization. In this regard, since the 1990s, evolving empirical literature highlights that financial sector development is significant factor for economic growth. On the other hand, at the moment when financial sector liberalization spread around the world, it has been noted diminishing influence of financial sector development on economic growth.

The estimation established in the empirical study by King and Levine (1993) comprises about 80 countries for the period from 1960 to 1989 and by using cross-country regression model, analysed the possible connection between certain indicators of size and relative importance of financial intermediaries and the accumulation of capital rate and the rise of productivity as the key factors of the economic growth. Their research found a positive and statistically significant relationship between several financial development indicators and GDP per capita growth.

Calderón (2002) used the Geweke decomposition test (Geweke, 1982) on unit data of 109 developing and industrial countries in the period 1960-1994 with aim to examine the trend of causality between financial development and economic growth and adopted the following conclusions:

- (1) Financial development induces the economic growth;
- (2) Coexistence of both opposite relations, such as: the Granger causality from financial development to economic growth and vice versa;
- (3) Financial diversity provokes more to the causality relations in the developing countries;
- (4) The longer interval of the sample contributes for more significant effect of financial development on economic growth;
- (5) Financial diversity stirs economic growth through intensive capital accumulation and growth of productivity.

Winkler (2009) analyses the process of rapid financial diversification and coherent risks for Southeastern European countries and concludes that is impossible to guarantee financial stability through the rising entry of foreign banks.

3. ECONOMETRIC MODEL

With the aim to examine the effects of the financial diversification on the economic growth in eight EEC, we evaluate a vector error correction model (VECM). The paper applies a multivariate cointegration methodology established by Johansen (1988, 1991) and Johansen and Juselius (1990) to evaluate the possible relationship between financial depth indicators and real output of selected group of Eastern European countries. This method is based on a vector autoregression model (VAR) of order p (lags) to analyze the long run relationships that may exist among representative non-stationary variables:

$$Y_{t} = \mu + A_{1}Y_{t-1} + A_{2}Y_{t-2} + \ldots + A_{p}Y_{t-p} + \varepsilon_{t}$$
(1)

where Y_t is a $n \times 1$ vector of endogenous variables that are integrated of order one – commonly denoted I(1), μ is a $n \times 1$ vector of the constants, A_i are $n \times n$ polynomial variance-covariance matrix, $\varepsilon_t \sim N_n$ (0, Σ_{ε}) is a $n \times 1$ normalized vector of innovations (exogenous shocks).

In the case when at least two variables are cointegrated of the order one (I(1)), the VAR in the previous equation can be rewritten by deducting Y_{t-1} to the vector error correction model:

$$\Delta Y_{t} = \mu + \Pi Y_{t-1} + \sum_{i=1}^{p-1} \Gamma_{1} \Delta Y_{t-1} + \varepsilon_{t}$$
(2)

where ΔY_t is a $n \times 1$ vector of the first differences of stochastic variables Y_t , $\Pi = \sum_{i=1}^p A_i - I$, $\Gamma_t = -\sum_{j=i+1}^p A_j$, I is $n \times n$ identity matrix.

The VECM model comprises information on short-term and long-term adjustments to changes in Y_t , enclosed in projected Γ and Π appropriately. Γ represents the dynamic of the model in the short run, respectively adjustments to changes in Y_t , while Π represents the long run relationship among the variables included in the vector Y_t . Therefore, the matrix Π determines the number of error correction terms in the model and is called impact matrix. Π can be decomposed as follows:

$\Pi = \alpha \beta' \tag{3}$

where the elements of α represent adjustment parameters in the vector error correction model, while each column of β is the cointegrating vector. The variable *r* is the number of cointegrating relationships. If the coefficient matrix Π has reduced rank *r*<*n*, there exist *n x r* matrices α and , each with rank *r* such that $\Pi = \alpha \beta'$ and $\beta' y_t$ is stationary. VECM requires presence of at least one cointegrating relationship.

Johansen recommends two different likelihood ratio tests of significance of respective canonical correlations and thereby the reduced risk of the Π matrix: the trace test and maximum eigenvalue test, shown in the following equations respectively.

$$\lambda_{trace}(r) = -T \sum_{i=r+1}^{n} \ln(1 - \hat{\lambda})$$

$$\lambda_{max}(r, r+1) = -T \ln(1 - \hat{\lambda}_{r=1})$$
(4)
(5)

where T is the sample size and $\hat{\lambda}_i$ is the *i*:th largest canonical correlation. The trace test tests the null hypothesis of r cointegrating vectors against the optional hypothesis of n cointegrating vectors. On the other hand, the maximum eigenvalue test, tests the null hypothesis of of r cointegrating vectors against the optional hypothesis of r+1 cointegrating vectors.

The next step before projecting the model is related with testing the time series for stationarity. According to the study of Engle and Granger (1987) is required that all variables within the cointegration relationship have to possess the same order of integration.

The key point of our study is connected to testing the direction of the causality linkages between financial depth indicators and real output using linear Granger causality test defined by the equation: x_t is said not to Granger–cause y_t , if

$$F(y_{t} \mid 0) = F(y_{t} \mid 0) = F(y_{t} \mid 0) = F(y_{t} \mid 0)$$

 $E(y_{t+p} | \Omega_t) = E(y_{t+p} | \Omega_t - x_t) \qquad (\forall_p > 0) \qquad (6)$ where x_t and y_t are two time series, E denotes the conditional distribution and $\Omega_t - x_t$ is all the information in the universe except series x_t . Therefore, x_t is said to not Granger – cause y_t , if X cannot help predict future Y.

Applying the projected VECM, the dynamic responses of the internal variables to the money stock, domestic bank deposits and domestic bank loans one standard deviation shocks are computed for any country from the group of EEC.

4. DATA AND EMPIRICAL RESULTS

In our paper, we used annual data ranging from 1995 to 2015 (21 observations) for the financial depth indicators (presented by the participation of broad money stock M2 (m), domestic bank deposits (d) and domestic bank loans (l) to GDP), GDP (y), inflation (p) represented by the adjusted domestic consumer price index, nominal effective exchange rate (NEER) (e) and short-term interest rates (i).

Time series for broad money stock (monetary aggregate) M2, domestic bank deposits, domestic bank loans and GDP are seasonally adjusted and with NEER are indicated as indexes with base line year 2010. From the other side, inflation rate and interest rate are estimated as an annual percentage change of adjusted consumer price index indicated on the quarterly base.

First of all, before computing the model, we test the time series for stationarity. To ascertain the order of integration of different variables we use augmented Dickey-Fuller (ADF) and the Phillips-Perron (PP) tests. Namely, ADF test use a parametric autoregressive structure to capture serial correlation (trend-stationary) while PP test use non-parametric corrections based on estimates of the long-run variance of Δy_t (difference-stationary). Those tests were used to test the endogenous variables for the existence of the unit roots.

When all the endogenous variables order of integration is identified, it is necessary to test the time series for cointegration by Johansen cointegration test. The Johansen test and estimation strategy makes it possible to estimate all cointegrating vectors when there are more than two variables.

Accordingly to the results of the unit root tests and cointegration tests, we apply Granger causality test and calculate the model using first differences of the variables. Toward assessment the responses of the real output (GDP) to the money stock, domestic deposits and domestic loans, we evaluate following three models for separate country from the group of EEC – model A ($Y_t = [m_t, y_t, p_t, e_t, i_t]$), model B ($Y_t = [d_t, y_t, p_t, e_t, i_t]$) and model C ($Y_t = [l_t, y_t, p_t, e_t, i_t]$) for each of the individual country from the group of EEC.

A. Unit root Test

The obtained results of ADF and PP tests for unit roots presence in the endogenous variables are exposed in the Table 1.

[Insert Table 1 here]

Both tests show that the variables are non-stationary on the values i.e. the null hypothesis of a unit root presence can't be unadopted for any of the series. On the other hand, testing variables on the first differences shows the stationarity of the time series. Therefore, all variables in the paper can be tested for cointegration.

B. Cointegration Test

In order to test endogenous variables that contain a unit root on the values for cointegration, we use the Johansen cointegration test. The results of the test divided eight EEC in two groups.

[Insert Table 2 here]

Both trace statistics and maximum eigenvalue statistics (both at 0.05 level) indicate the existence of two cointegration equation in Slovenia (model A), Slovak Republic (model B) and Latvia (model B). Mixed results of cointegration analyses indicate both tests in Bulgaria (model A and B), Czech republic (model A), Hungary (model A and C), Romania (model C) and Slovenia(model B). Namely, the trace test statistics denotes that there is no cointegration among the analysed variables.

C. Granger Causality Test

In order to test for evidence of causality between variables we employ Granger causality test. One variable is Granger-caused by another, if the second variable enables to predict the first one, or if the coefficients on the lagged are statistically significant.

The results of Granger causality tests are shown in Table 3.

[Insert table 3 here]

There is no causality between financial depth indicators and real output in Bulgaria, Czech Republic, Slovak republic and Slovenia.

On the other hand, we obtained mixed results for Hungary, Latvia, Poland and Romania. In Hungary Granger causality test indicate domestic loans foster economic growth. On the other hand, in Poland domestic deposits granger economic growth. Our observation shows that money stock affect real economic activity in Romania.

From the estimated results per country, we may summarized that causality between economic growth and financial depth indicators doesn't seem very clear for the whole group of EEC.

5. CONCLUSION

In the paper we have examine the key aspects of the financial diversification in eight EEC in the period 1995-2015. We have used a multivariate cointegration methodology to estimate the relationship between financial diversification indicators and real output in selected EEC. To find the order of integration of endogenous variables, we have used ADF and PP tests. To assess the rank of cointegration, we have implemented Johansen cointegration test. We have tested the direction of the causality links between financial diversification indicators and real output using Granger causality test.

We may summarize our findings as follows: (1) countries with lower GDP per capita seem to benefit from financial diversification, as the financial diversification indicators affects real economic activity with higher intensity in the short-run and Granger cause real output in the long-run; (2) Whilst short-run effects of financial diversification indicators' on the real output development differs in intensity and durability, overall positive impact is clear in all EEC.

REFERENCES

[1] Al-Yousif, Y.K. (2002) Financial development and economic growth: Another look at the evidence from developing countries, Review of Financial Economics, 11(2):131-150.

[2] Calderon, C. (2002) *The Direction of Causality Between Financial Development and Economic Growth*, Central Bank of Chile's Working Paper No.184, 20 p.

[3] Demetriades, P. & Husseinn, K. (1996) *Does Financial Development Cause Economic Growth? Time-Series Evidence from16 countries*, Journal of Development Economics, 51:2.

[4] Estrada, G., Pak, D. & Ramayandi, A. (2010) Financial Development and Economic Growth in Developing Asia, ADB Economics Working Paper Series: Asian Development Bank.

[5] Geweke, J. (1982) *Measurementof Linear Dependence and Feedback between Time Series*. Journal of the American Statistical Association 77 (378): 304-24.

[6] Granger, C.W.J. (1988) Some recent developments in the concept of causality, Journal of Econometrics, 39: 199–211.

[7] Johansen, S. (1988) *Statistical analysis of cointegrating vectors,* Journal of Economic Dynamic & Control, 12 (2-3): 231-254.

[8] Johansen, S., Juselius, K. (1990) Maximum Likelihood Estimation and Inference on Cointegration – with Applications to the Demand for Money, Oxford Bulletin of Economics and Statistics 52:169-200.

[9] Levine, R., Loayza, N., Beck, T. (2000) *Financial intermediation and growth: Causality and causes*, Journal of monetary Economics, 46(1): 72-82.

[10] Mirdala, R.(2011) Financial Deeping and Economic Growth in the European Transition Economies, *Berlin:MPRA*.

[11] Oks, A. (2001) Efficiency of the financial intermediaries and economic growth in CEEC. Tartu:*Tartu* University press

[12] Yaroson, E.(2015) Finance and Growth in Transition Economies: What Does Bootstrapping Tell Us?, *American Journal of Economics*, 5(6): 553-564.

Appendix	A	1													
Table 1. Te	ests for U	nit Roots	L	1											
Bulgaria															
		M2	BG	D!	BG		BG	GDP	_BG	INF	<u>BG</u>	NEEI	R_BG	IR_	BG
		ADF	PP	ADF	PP	ADF	PP	ADF	PP	ADF	PP	ADF	PP	ADF	PP
model A	values	1.533	1.533					-1.25	-1.577	4.018*	-3.363**	-10.25**	-18.38**	-3.678**	3.638**
	1.dif.	-3.198**	3.198*		1			3.477*	-1.039	3.897*	-3.897**	-3.435**	-8.399**	-11.08**	9.553**
model B	values		1	-1.506	-1.506		 	-1.25	-1.577	4.018*	-3.363**	-10.25**	-18.38**	-3.678**	3.638**
1	1.dif.	!	'	-1.449	-1.449	1 '	/	3.477*	-1.039	3.897*	-3.897**	-3.435**	-8.399**	-11.08**	9.553**
model C	values		1			-2.027	-1.946	-1.25	-1.577	4.018*	-3.363**	-10.25**	-18.38**	-3.678**	3.638**
	1.dif.	!	'		1 '	3.284*	-2.946	3.477*	-1.039	3.897*	-3.897**	-3.435**	-8.399**	-11.08**	9.553**
Czech	ļ		1	<u> </u>		1	<u> </u>		·						
republic															
		M2_	CZ	D_	CZ	L	CZ	G DF	CZ_	INI	F_CZ	NEE	R_CZ	IR_	CZ
		ADF	PP	ADF	PP	ADF	PP	ADF	PP	ADF	PP	ADF	PP	ADF	PP
model A	values	0.396	1.076	ſ '		י ד		-0.446	-0.505	3.258*	-3.172**	-1.036	-1.044	-2.192	-1.947
l	1.dif.	-2.887	-2.922		L'	L'	L!	-2.794	-2.795	-3.008	-2.887	-3.912**	-3.911**	-2.02	3.612**
model B	values	[!		0.225	0.643			-0.446	-0.505	3.258*	-3.172**	-1.036	-1.044	-2.192	-1.947
L	1.dif.	l!	<u> '</u>	7.077*	6.804*	<u> </u> '	<u> </u>	-2.794	-2.795	-3.008	-2.887	-3.912**	-3.911**	-2.02	3.612**
model C	values	[!				-1.223	-2.084	-0.446	-0.505	3.258*	-3.172**	-1.036	-1.044	-2.192	-1.947
L	1.dif.	<u> </u>	<mark>ا</mark> '		<u> '</u>	6.463*	6.439*	-2.794	-2.795	-3.008	-2.887	-3.912**	-3.911**	-2.02	3.612**
Hungary															
ſ	['	M2_	HU	D_1	HU		HU	G DP	_HU	INF	₹_HU	NEE	R_HU	IR_	HU
L		ADF	PP	ADF	PP	ADF	PP	ADF	PP	ADF	PP	ADF	PP	ADF	PP
	values	0.231	0.17		ſ !			-1.33	-1.272	-1.807	-3.138**	-5.197**	-4.575**	-4.175**	6.973**
model A	1.dif.	-3.182**	-3.184	!	l'	L'	L!	-2.936	-2.925	-1.605	-1.428	-2.244	-5.523**	-2.02	6.973**
 _	values	 _	 '	-1.13	-1.13	 		-1.33	-1.272	-1.807	-3.138**	-5.197**	-4.575**	-4.175**	6.973**
model B	1.dif.	!	<u>ا</u> ا	4.117*	4.106*	<u>ا</u> ا	!	-2.936	-2.925	-1.605	-1.428	-2.244	-5.523**	-2.02	6.973**
	values		· · · ·			-1.106	-1.074	-1.33	-1.272	-1.807	-3.138**	-5.197**	-4.575**	-4.175**	6.973**
model C	1.dif.	l!	<u>ا</u> ا	<u>ا</u> ا	l'	-5.13**	5.197*	-2.936	-2.925	-1.605	-1.428	-2.244	-5.523**	-2.02	6.973**
Latvia															
		M2_	LT	D	LT	L_	LT	G DF	LT	INI	F_LT	NEE	R_LT	IR_	LT
l'		ADF	PP	ADF	PP	ADF	PP	ADF	PP	ADF	PP	ADF	PP	ADF	PP
	values	-0.268	-0.182	— — '			— —,	-1.07	-1.195	-0.567	-0.941	-4.411**	-2.267	-2.466	-2.466
model A	1.dif.	-1.24	-1.097		l'	'	!	3.652*	-2.284	-2.645	-2.658	-4.481**	-2.51	-5.237**	5.242**
	values		 ,	-1.64	-1.64			-1.07	-1.195	-0.567	-0.941	-4.411**	-2.267	-2.466	-2.466
model B	1.dif.	i !	l '	3.218*	3.194*	l !	!	3.652*	-2.284	-2.645	-2.658	-4.481**	-2.51	-5.237**	5.242**
	values	()	1	1		-1.791	-1.278	-1.07	-1.195	-0.567	-0.941	-4.411**	-2.267	-2.466	-2.466
model C	1.dif	1 1	1		1	-1.812	-1.835	3.652*	-2.284	-2.645	-2.658	-4.481**	-2.51	-5.237**	5.242**

Poland															
		M2_	PL	D_	PL		PL	GDI	P_PL	INI	F_PL	NEE	R_PL	IR_	PL
		ADF	PP	ADF	PP	ADF	PP	ADF	PP	ADF	PP	ADF	PP	ADF	PP
	values	0.396	1.076					-0.445	-0.505	3.258*	-3.172**	-1.036	-1.044	-2.192	-1.947
model A	1.dif.	-2.887	-2.922					-2.794	-2.795	-3.008	-2.887	-3.912**	-3.911**	-2.02	3.612**
	values			0.225	0.643			-0.445	-0.505	3.258*	-3.172**	-1.036	-1.044	-2.192	-1.947
model B	1.dif.			7.076*	6.804*			-2.794	-2.795	-3.008	-2.887	-3.912**	-3.911**	-2.02	3.612**
	values					1.223	-2.084	-0.445	-0.505	3.258*	-3.172**	-1.036	-1.044	-2.192	-1.947
model C	1.dif.					6.463*	6.439*	-2.794	-2.795	-3.008	-2.887	-3.912**	-3.911**	-2.02	3.612**
Romania															
		M2	RO	р	RO	L	RO	GDP	RO	INF	RO	NEE	R RO	IR	RO
		ADF	PP	ADF	PP	ADF	PP	ADF	_HO PP	ADF	LO PP	ADF	PP	ADF	PP
		-0.483	0.055					0.06	-0.128	3 0 1 0 *	-1.659	-13 31**	-24 56**	-1.004	-0.952
model A	values	-3.234**	-1.736					3.105*	3.095*	-1.196	-1.543	-29.11**	-4.248**	-6.004**	6.004**
IIDdel A	1.011.			-1 924	3 4 5 6 *			0.06	-0.128	3 9 1 9*	-1 659	-13 31**	-24 56**	-1 004	-0.952
model P	values			4.999*	5.015*			3.105*	3.095*	-1.196	-1.543	-29.11**	-4.248**	-6.004**	6.004**
libuel B	1.011.					-1714	-1.47	0.06	-0.128	3 9 1 9 *	-1 659	-13 31**	-24 56**	-1.004	-0.952
model C	values					-2.766	-2.733	3.105*	3.095*	-1.196	-1.543	-29.11**	-4.248**	-6.004**	6.004**
Slovak ren	ublic														
Siotakiep		M2	SK	D	SK	L	SK	GDF	SK	INI	F SK	NEE	R SK	IR	SK
		ADF	PP	ADF	PP	ADF	PP	ADF	PP	ADF	PP	ADF	PP	ADF	PP
	values	0 894	1.025					0.096	-0.096	-2.991	-2.311	-0.968	-0.586	-1.791	-2.834
	values	0.074													
model A	1.dif	-1.626	-1.626					3.561*	-3.54**	-2.127	-2.044	-2.433	-2.433	-1.459	-1.929
model A	1.dif.	-1.626	-1.626	0.251	0.477			3.561* 0.096	-3.54** -0.096	-2.127 -2.991	-2.044 -2.311	-2.433 -0.968	-2.433 -0.586	-1.459	-1.929
model A	1.dif. values 1.dif.	-1.626	-1.626	0.251 3.157*	0.477			3.561* 0.096 3.561*	-3.54** -0.096 -3.54**	-2.127 -2.991 -2.127	-2.044 -2.311 -2.044	-2.433 -0.968 -2.433	-2.433 -0.586 -2.433	-1.459 -1.791 -1.459	-1.929 -2.834 -1.929
model A model B	1.dif. values 1.dif.	-1.626	-1.626	0.251 3.157*	0.477 -2.614	-1.812	-1.805	3.561* 0.096 3.561* 0.096	-3.54** -0.096 -3.54** -0.096	-2.127 -2.991 -2.127 -2.991	-2.044 -2.311 -2.044 -2.311	-2.433 -0.968 -2.433 -0.968	-2.433 -0.586 -2.433 -0.586	-1.459 -1.791 -1.459 -1.791	-1.929 -2.834 -1.929 -2.834
model A model B model C	1.dif. values 1.dif. values 1.dif.	-1.626	-1.626	0.251 3.157*	0.477	-1.812 4.708*	-1.805 4.853*	3.561* 0.096 3.561* 0.096 3.561*	-3.54** -0.096 -3.54** -0.096 -3.54**	-2.127 -2.991 -2.127 -2.991 -2.127	-2.044 -2.311 -2.044 -2.311 -2.044	-2.433 -0.968 -2.433 -0.968 -2.433	-2.433 -0.586 -2.433 -0.586 -2.433	-1.459 -1.791 -1.459 -1.791 -1.459	-1.929 -2.834 -1.929 -2.834 -1.929
model A model B model C Slovenia	1.dif. values 1.dif. values 1.dif.	-1.626	-1.626	0.251 3.157*	0.477	-1.812 4.708*	-1.805 4.853*	3.561* 0.096 3.561* 0.096 3.561*	-3.54** -0.096 -3.54** -0.096 -3.54**	-2.127 -2.991 -2.127 -2.991 -2.127	-2.044 -2.311 -2.044 -2.311 -2.044	-2.433 -0.968 -2.433 -0.968 -2.433	-2.433 -0.586 -2.433 -0.586 -2.433	-1.459 -1.791 -1.459 -1.791 -1.459	-1.929 -2.834 -1.929 -2.834 -1.929
model A model B model C Slovenia	1.dif. values 1.dif. values 1.dif.	-1.626	-1.626 	0.251 3.157* D	0.477 -2.614	-1.812 4.708*	-1.805 4.853* SI	3.561* 0.096 3.561* 0.096 3.561* GD	-3.54** -0.096 -3.54** -0.096 -3.54** P_SI	-2.127 -2.991 -2.127 -2.991 -2.127 IN	-2.044 -2.311 -2.044 -2.311 -2.044 F_SI	-2.433 -0.968 -2.433 -0.968 -2.433 NEE	-2.433 -0.586 -2.433 -0.586 -2.433 R_SI	-1.459 -1.791 -1.459 -1.791 -1.459 IR	-1.929 -2.834 -1.929 -2.834 -1.929
model A model B model C Slovenia	1.dif. values 1.dif. values 1.dif.	-1.626 	-1.626 	0.251 3.157* D ADF	0.477 -2.614 SI PP	-1.812 4.708* L_ ADF	-1.805 4.853* SI PP	3.561* 0.096 3.561* 0.096 3.561* GDI ADF	-3.54** -0.096 -3.54** -0.096 -3.54** P_SI PP	-2.127 -2.991 -2.127 -2.991 -2.127 INI ADF	-2.044 -2.311 -2.044 -2.311 -2.044 F_SI PP	-2.433 -0.968 -2.433 -0.968 -2.433 NEE ADF	-2.433 -0.586 -2.433 -0.586 -2.433 R_SI PP	-1.459 -1.791 -1.459 -1.791 -1.459 IR ADF	-1.929 -2.834 -1.929 -2.834 -1.929 - SI PP
model A model B model C Slovenia	1.dif. values 1.dif. values 1.dif.	-1.626 M2_ ADF 0.166	-1.626 	0.251 3.157* D_ ADF	0.477 -2.614 	-1.812 4.708* L_ ADF	-1.805 4.853* SI PP	3.561* 0.096 3.561* 0.096 3.561* GD ADF -1.748	-3.54** -0.096 -3.54** -0.096 -3.54** P_SI PP -1.686	-2.127 -2.991 -2.127 -2.991 -2.127 INI ADF -4.52**	-2.044 -2.311 -2.044 -2.311 -2.044 F_SI PP -4.52**	-2.433 -0.968 -2.433 -0.968 -2.433 NEE ADF -3.884**	-2.433 -0.586 -2.433 -0.586 -2.433 R_SI PP -6.892**	-1.459 -1.791 -1.459 -1.791 -1.459 IR ADF -0.204	-1.929 -2.834 -1.929 -2.834 -1.929 - SI PP -0.298
model A model B model C Slovenia	1.dif values 1.dif values 1.dif	-1.626 -1.626 M2_ ADF 0.166 -2.715	-1.626 SI PP 0.446 -2.896	0.251 3.157* D ADF	0.477 -2.614 	-1.812 4.708* L_ ADF	-1.805 4.853* SI PP	3.561* 0.096 3.561* 0.096 3.561* GDI ADF -1.748 3.169*	-3.54** -0.096 -3.54** -0.096 -3.54** P_SI PP -1.686 3.133*	-2.127 -2.991 -2.127 -2.991 -2.127 INI ADF -4.52** -1.285	-2.044 -2.311 -2.044 -2.311 -2.044 F_SI PP -4.52** -1.213	-2.433 -0.968 -2.433 -0.968 -2.433 NEE ADF -3.884** -4.119**	-2.433 -0.586 -2.433 -0.586 -2.433 R_SI PP -6.892** -4.119**	-1.459 -1.791 -1.459 -1.791 -1.459 IR ADF -0.204 -2.315	-1.929 -2.834 -1.929 -2.834 -1.929 -2.834 -1.929 -5I -0.298 -2.194
model A model B model C Slovenia model A	1.dif values 1.dif values 1.dif values 1.dif values	-1.626 -1.626 M2_ ADF 0.166 -2.715	-1.626 SI PP 0.446 -2.896	0.251 3.157* D ADF	0.477 -2.614 SI -1.374	-1.812 4.708* L_ADF	-1.805 4.853* SI PP	3.561* 0.096 3.561* 0.096 3.561* GD ADF -1.748 3.169* -1.748	-3.54** -0.096 -3.54** -0.096 -3.54** P_SI PP -1.686 3.133* -1.686	-2.127 -2.991 -2.127 -2.991 -2.127 MDF -4.52** -1.285 -4.52**	-2.044 -2.311 -2.044 -2.311 -2.044 F_SI PP -4.52** -1.213 -4.52**	-2.433 -0.968 -2.433 -0.968 -2.433 NEE ADF -3.884** -4.119**	-2.433 -0.586 -2.433 -0.586 -2.433 R_SI PP -6.892** -4.119**	-1.459 -1.791 -1.459 -1.791 -1.459 IR ADF -0.204 -2.315 -0.204	-1.929 -2.834 -1.929 -2.834 -1.929 SI PP -0.298 -2.194 -0.298
model A model B Model C Slovenia model A model B	1.dif values 1.dif values 1.dif values 1.dif values 1.dif	-1.626 -1.626 -1.626 -1.626 -2.715	-1.626 SI PP 0.446 -2.896	0.251 3.157* D_ ADF -1.38 4.279*	0.477 -2.614 SI PP -1.374 4.279*	-1.812 4.708* L_ ADF	-1.805 4.853* SI PP	3.561* 0.096 3.561* 0.096 3.561* GD ADF -1.748 3.169* -1.748 3.169*	-3.54** -0.096 -3.54** -0.096 -3.54** P_SI PP -1.686 3.133*	-2.127 -2.991 -2.127 -2.991 -2.127 INI ADF -4.52** -1.285 -4.52** -1.285	-2.044 -2.311 -2.044 -2.311 -2.044 F_SI PP -4.52*** -1.213 -4.52** -1.213	-2.433 -0.968 -2.433 -0.968 -2.433 -2.433 -2.433 -2.433 -3.884** -3.884** -4.119**	-2.433 -0.586 -2.433 -0.586 -2.433 R_SI PP -6.892** -6.892** -6.892** -4.119**	-1.459 -1.791 -1.459 -1.791 -1.459 IR ADF -0.204 -2.315 -0.204 -2.315	-1.929 -2.834 -1.929 -2.834 -1.929 -2.834 -1.929 SI PP -0.298 -2.194 -0.298 -2.194
model A model B Slovenia model A model B	1.dif values 1.dif values 1.dif values 1.dif values 1.dif values 1.dif	-1.626 -1.626 -1.626 -1.626 -2.715	-1.626 SI PP 0.446 -2.896	0.251 3.157* D_ ADF -1.38 4.279*	0.477 -2.614 SI PP -1.374 4.279*	-1.812 4.708* L_ADF	-1.805 4.853* SI PP	3.561* 0.096 3.561* 0.096 3.561* GD ADF -1.748 3.169* -1.748 3.169* -1.748	-3.54** -0.096 -3.54** -0.096 -3.54** P_SI PP_SI PP -1.686 3.133* -1.686	-2.127 -2.991 -2.127 -2.991 -2.127 -2.991 -2.127 INI ADF -4.52** -1.285 -4.52** -1.285 -4.52**	-2.044 -2.311 -2.044 -2.311 -2.044 F_SI PP -4.52** -1.213 -4.52** -1.213 -4.52**	-2.433 -0.968 -2.433 -0.968 -2.433 -2.433 -2.433 -2.433 -3.884** -3.884** -4.119** -3.884**	-2.433 -0.586 -2.433 -0.586 -2.433 R_SI PP -6.892** -4.119** -6.892** -4.119**	-1.459 -1.791 -1.459 -1.791 -1.459 IR ADF -0.204 -2.315 -0.204 -2.315 -0.204	-1.929 -2.834 -1.929 -2.834 -1.929 -2.834 -1.929 SI PP -0.298 -2.194 -0.298 -2.194 -0.298
model A model B model C Slovenia model A model B model C	1.dif values 1.dif values 1.dif values 1.dif values 1.dif values 1.dif	-1.626 -1.626 -1.626 -1.626 -2.715	-1.626 SI PP 0.446 -2.896	0.251 3.157* D ADF -1.38 4.279*	0.477 -2.614 SI PP -1.374 4.279*	-1.812 4.708* L_ADF 4.434* 4.104*	-1.805 4.853* SI PP 4.434* 18.14*	3.561* 0.096 3.561* 0.096 3.561* GD ADF -1.748 3.169* -1.748 3.169* -1.748 3.169*	-3.54** -0.096 -3.54** -0.096 -3.54** P_SI PP -1.686 3.133* -1.686 3.133*	-2.127 -2.991 -2.127 -2.991 -2.127 -2.127 INT ADF -4.52** -1.285 -4.52** -1.285 -4.52** -1.285	-2.044 -2.311 -2.044 -2.311 -2.044 F_SI PP -4.52** -1.213 -4.52** -1.213 -4.52** -1.213	-2.433 -0.968 -2.433 -0.968 -2.433 NEE ADF -3.884** -3.884** -4.119** -3.884** -4.119**	-2.433 -0.586 -2.433 -0.586 -2.433 R_SI PP -6.892** -4.119** -6.892** -4.119**	-1.459 -1.791 -1.459 -1.791 -1.459 IR ADF -0.204 -2.315 -0.204 -2.315 -0.204 -2.315	-1.929 -2.834 -1.929 -2.834 -1.929 -2.834 -1.929 -0.298 -2.194 -0.298 -2.194 -0.298 -2.194
model A model B model C Slovenia model A model B model C Source: Aut	1.dif values 1.dif values 1.dif values 1.dif values 1.dif values 1.dif	-1.626 -1.626 -1.626 -2.715 -2.715	-1.626 SI PP 0.446 -2.896	0.251 3.157* D ADF -1.38 4.279*	0.477 -2.614 SI PP -1.374 4.279*	-1.812 4.708* L_ADF 4.434* 4.104*	-1.805 4.853* SI PP 4.434* 18.14*	3.561* 0.096 3.561* 0.096 3.561* GDI ADF -1.748 3.169* -1.748 3.169* -1.748 3.169*	-3.54** -0.096 -3.54** -0.096 -3.54** P_SI PP -1.686 3.133* -1.686 3.133*	-2.127 -2.991 -2.127 -2.991 -2.127 MDF -4.52** -1.285 -4.52** -1.285 -4.52** -1.285	-2.044 -2.311 -2.044 -2.311 -2.044 F_SI PP -4.52** -1.213 -4.52** -1.213 -4.52** -1.213	-2.433 -0.968 -2.433 -0.968 -2.433 NEE ADF -3.884** -4.119** -3.884** -4.119**	-2.433 -0.586 -2.433 -0.586 -2.433 R_SI PP -6.892** -4.119** -6.892** -4.119**	-1.459 -1.791 -1.459 -1.791 -1.459 IR _ ADF -0.204 -2.315 -0.204 -2.315 -0.204 -2.315	-1.929 -2.834 -1.929 -2.834 -1.929 -0.298 -2.194 -0.298 -2.194 -0.298 -2.194

Appendix B Table 2. Johansen and Juselius cointegration rank tests

Hypoth esized No. of CE(s)			Bulg	garia				Czech F	Republic			
	mod	lel A	mod	lel B	mod	lel C	model A model B model C					
	trace stat	max eigval ue stat	trace stat	max eigval ue stat	trace stat	trace stat	max eigval ue stat	trace stat	max eigval ue stat	trace stat	max eigval ue stat	

i	1	1	1	1	1	1	1		1	1	1	
r-0	150.	76.3	118.	59.1	120.	56.7	116.	42.4	159.	76.7	130.	57.8
1-0	2871	2474	4506	3967	6897	4097	0025	2710	9676	6795	3431	9594
rr~1	73.9	31.3	59.3	23.4	63.9	33.2	73.5	35.9	83.1	51.6	72.4	36.0
121	6238	1320	1093	9856	4877	3015	7535	2360	9969	4523	4720	7253
m -2	42.6	18.7	35.8	17.6	30.7	18.6	37.6	21.0	31.5	18.1	36.3	24.4
152	4917	1189	1237	5714	1863	4721	5176	9268	5446	9444	7467	2572
m-2	23.9	15.1	18.1	13.3	12.0	7.77	16.5	12.5	13.3	13.0	11.9	9.36
1_5	3729	2778	5523	0015	7142	0807	5908	3239	6003	9270	4895	2091
r<1	8.80	8.80	4.85	4.85	4.30	4.30	4.02	4.02	0.26	0.26	2.58	2.58
1_4	9501	9501	5076	5076	0611	0611	6688	6688	7330	7330	6858	6858

Hypoth esized No. of CE(s)			Hun	gary			Latvia						
	mod	el A	mod	lel B	mod	lel C	model A model B model						
	trace	max eigval	trace	max eigval	trace	max eigval	trace	max eigval	trace	max eigval	trace	max eigval	
	stat	ue	stat	ue	stat	ue	stat	ue	stat	ue	stat	ue	
		stat		stat		stat		stat		stat		stat	
r-0	142.	71.7	129.	59.2	155.	77.4	121.	53.4	100.	45.3	139.	56.4	
1-0	2313	6857	0596	6213	2941	1658	9107	6440	7744	7966	6918	0570	
r~1	70.4	36.3	69.7	36.4	77.8	39.6	68.4	37.3	55.3	30.9	83.2	47.3	
1 21	6272	7979	9748	5872	7754	9182	4632	6053	9469	5154	8613	1539	
*~?	34.0	16.2	33.3	18.6	38.1	17.2	31.0	19.5	24.4	11.0	35.9	20.3	
152	8293	2710	3876	6588	8572	4675	8579	8936	4315	4017	7074	6879	
	17.8	11.7	14.6	9.94	20.9	15.3	11.4	6.00	13.4	7.58	15.6	12.5	
د∠1	5583	0058	7288	2837	3897	7785	9643	0347	0298	1290	0194	4568	
m 1	6.15	6.15	4.73	4.73	5.56	5.56	5.49	5.49	5.82	5.82	3.05	3.05	
1_4	5251	5251	0043	0043	1123	1123	6085	6085	1687	1687	6269	6269	

Hypoth												
esized			Del	and					Dom	ania		
No. of			FOI	anu					KOII	lama		
CE(s)												
	mod	el A	mod	lel B	mod	lel C	model A model B mod					lel C
		max		max		max		max		max		max
	trace	eigval	trace	eigval	trace	eigval	trace	eigval	trace	eigval	trace	eigval
	stat	ue	stat	ue	stat	ue	stat	ue	stat	ue	stat	ue
		stat		stat		stat		stat		stat		stat
r-0	181.	76.7	197.	101.	154.	80.2	173.	86.6	179.	103.	169.	91.0
1-0	8360	9366	3861	6355	7323	6326	8283	7569	1771	3105	5422	0107
rr~1	105.	54.4	95.7	65.3	74.4	44.2	87.1	37.0	75.8	37.1	78.5	37.9
121	0423	8179	5067	5682	6906	4335	5263	7468	6660	5839	4109	7352
	50.5	36.5	30.3	16.3	30.2	20.2	50.0	29.0	38.7	20.6	40.5	18.1
152	6052	6685	9385	0680	2571	7241	7795	0625	0821	4604	6757	8332
	13.9	8.20	14.0	9.89	9.95	8.76	21.0	15.1	18.0	15.7	22.3	16.0
1≥3	9367	5750	8705	4776	3296	6841	7170	9273	6217	0110	8425	2523
	5.78	5.78	4.19	4.19	1.18	1.18	5.87	5.87	2.36	2.36	6.35	6.35
1_4	7922	7922	2275	2275	6455	6455	8965	8965	1074	1074	9015	9015

	-											
Hypoth												
esized			Slovak I	Popublic					Slov	onia		
No. of			SIUVAKI	xepuone					5101	Cilla		
CE(s)												
	mod	lel A	mod	lel B	mod	lel C	model A model B model					
		max		max		max		max		max		max
	trace	eigval	trace	eigval	trace	eigval	trace	eigval	trace	eigval	trace	eigval
	stat	ue	stat	ue	stat	ue	stat	ue	stat	ue	stat	ue
		stat		stat		stat		stat		stat		stat
r-0	136.	69.5	114.	65.1	94.6	42.1	143.	80.0	113.	46.5	119.	47.8
1-0	8194	3168	7842	6095	3536	9685	8417	6975	5945	6442	9918	5104
rr~1	67.2	34.9	49.6	28.0	52.4	25.9	63.7	43.1	67.0	32.1	72.1	38.1
121	8777	2983	2327	0603	3851	1764	7190	1321	3008	3029	4075	7254
	32.3	19.1	21.6	14.4	26.5	13.3	20.6	10.4	34.8	18.0	33.9	18.4
I <u>≥</u> 2	5793	3287	1724	2845	2087	2841	5869	9935	9979	3074	6820	9746
	13.2	6.87	7.18	7.11	13.1	8.91	10.1	7.35	16.8	11.7	15.4	8.64
125	2506	5364	8789	0796	9246	0139	5934	2148	6905	1955	7075	3782
m 1	6.34	6.34	0.07	0.07	4.28	4.28	2.80	2.80	5.14	5.14	6.82	6.82
1_4	9697	9697	7993	7993	2323	2323	7193	7193	9497	9497	6967	6967

Appendix C Table 3. *Granger Causality Tests*

Bulgaria								Czech republic							
	null hypo	othesis		lag s	obs	prob	decision		null hyp othe	sis		lags	obs	prob	decision
modalA	M2_BG does n	ot Grainger cause	GDP_BG	3	18	0.1663	do not reject	modelA	M2_CZ does not Grainger of				15	0.8578	do not reject
moderA	GDP_BG does	not Grainger cause	e M2_BG	3	18	0.5472	do not reject	moderA	GDP_CZ does a	not Grainger cause	M2_CZ	3	15	0.3479	do not reject
modal P	D_BG does not Grainger cause GDP_H			3	18	0.8272	do not reject	model P	D_CZ does not	Grainger cause Gl	OP_CZ	3	18	0.5361	do not reject
moderB	GDP_BG does	not Grainger cause	e D_BG	3	18	0.5686	do not reject	moderb	GDP_CZ does i	not Grainger cause	D_CZ	3	18	0.2194	do not reject
modelC	L_BG does not	Grainger cause GI	OP_BG	3	17	0.6472	do not reject	madalC	L_CZ does not	Graing er cause GI	P_CZ	3	18	0.5504	do not reject
moderC	GDP_BG does	not Grainger cause	e L_BG	3	17	0.3233	do not reject	moderC	GDP_CZ does i	not Grainger cause	L_CZ	3	18	0.3479	do not reject

Hung ary								Latvia							
	null hypo	othesis		lag s	obs	prob	decision		null hyp othe	sis		lags	obs	prob	decision
	M2_HU does no	ot Grainger cause	GDP_HU	3	18	0.2556	do not reject		M2_LT does no	t Grainger cause G	DP_LT	3	18	0.7875	do not reject
modelA	GDP_HU does i	not Grainger cause	e M2_HU	3	18	0.0861	do not reject	modelA	GDP_LT does n	ot Grainger cause	M2_LT	3	18	0.3661	do not reject
	D_HU does not	Grainger cause G	DP_HU	3	18	0.3375	do not reject		D_LT does not	Grainger cause GD	P_LT	3	18	0.2888	do not reject
modelB	GDP_HU does	not Grainger cause	e D_HU	3	18	0.0354	reject	modelB	GDP_LT does n	ot Grainger cause	D_LT	3	18	0.3881	do not reject
	L_HU does not	Grainger cause GI	OP_HU	3	18	0.0035	reject		L_LT does not 0	Grainger cause GDI	P_LT	3	18	0.1861	do not reject
modelC	GDP_HU does 1	not Grainger cause	e L_HU	3	18	0.0009	reject	modelC	GDP_LT does n	ot Grainger cause	L_LT	3	18	0.0358	reject
		-													
Poland								Romania							
	null hypo	othesis		lag s	obs	prob	decision		null hyp othe	sis		lags	obs	prob	decision
modal A	M2_LT does no	t Grainger cause (GDP_LT	3	17	0.2459	do not reject	modelA	M2_RO does n	ot Grainger cause (GDP_RO	3	12	0.0168	reject
modelA	GDP_LT does n	ot Grainger cause	M2_LT	3	17	0.2193	do not reject	modelA	GDP_RO does	not Grainger cause	M2_RO	3	12	0.6731	do not reject
1.15	D_LT does not	Graing er cause GI	OP_LT	3	16	0.0021	reject		D_RO does not	DP_RO	3	18	0.4689	do not reject	
modelB	GDP_LT does n	ot Grainger cause	D_LT	3	16	0.5105	do not reject	modelB	GDP_RO does	D_RO	3	18	0.004	reject	
1.10	L_LT does not 0	Grainger cause GD	P_LT	3	17	0.1974	do not reject	1.16	L_RO does not	P_RO	3	18	0.5743	do not reject	
moderC	GDP_LT does n	ot Grainger cause	L_LT	3	17	0.5721	do not reject	modelC	GDP_RO does	not Grainger cause	L_RO	3	18	0.0597	do not reject
<u>a</u> 1 1								G1 .							
Slovak re	public							Slovenia							
	null hyp o	othesis		lag s	obs	prob	decision		null hypothe	sis		lags	obs	prob	decision
model A	M2_SK does no	ot Grainger cause	GDP_SK	3	6			modelA	M2_SIdoes no	t Grainger cause G	DP_SI	3	9	0.8899	do not reject
	GDP_SK does r	not Grainger cause	M2_SK	3	6				GDP_SIdoes not Grainger cause M2_SI			3	9	0.5959	do not reject
model B	D_SKdoes not	Grainger cause Gl	DP_SK	3	18	0.0659	do not reject	model B	D_SIdoes not Grainger cause GDP_SI			3	18	0.6441	do not reject
moderb	GDP_SK does r	not Grainger cause	D_SK	3	18	0.6193	do not reject	moderb	GDP_SIdoes not Grainger cause D_SI			3	18	0.2893	do not reject
modelC	L_SK does not	Grainger cause GE	DP_SK	3	18	0.4062	do not reject	modelC	L_SIdoes not G	rainger cause GDP	_SI	3	18	0.9083	do not reject
moderC	GDP_SK does r	not Grainger cause	L_SK	3	18	0.4868	do not reject	moderC	GDP_SIdoes no	ot Grainger cause I	_SI	3	18	0.7457	do not reject

Authors own calculations