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Abstract: This scientific research paper presents the development of a neural network for a computer model that 

will be applied in the development of a chatbot web application based on a proprietary dataset. The aim of the 

chatbot is to provide virtual consulting support in the implementation of the Public Procurement Law in the Republic 

of Serbia. This AI tool is of crucial importance for both procurers and bidders, given the need for understanding and 

compliance with the law. By using the complete content of texts related to the law's implementation available on the 

internet, the model will train its neural networks based on an algorithm to provide answers to various questions. 

The chatbot will be capable of answering questions related to the definitions of the Public Procurement Law ("What 

is...?"), procedural questions ("What to do in the following case...?"), and ways to overcome obstacles in 

implementing the law ("How to overcome the problem...?"). By tracking the conversation context and searching 

through texts, the model will provide meaningful responses. 

This project has the potential to revolutionize the implementation of the Public Procurement Law in Serbia, 

considering the large number of officials and the lack of consultants who could provide accurate real-time answers 

and solutions. Currently, there are numerous decisions of the Republic Commission for the Protection of Rights that 

represent the practice of law implementation, and the chatbot would enable access to this information to ensure the 

correctness and transparency of public procurement procedures. 

Therefore, the model can be expanded and adapted for application with other laws, provided that there is appropriate 

textual material for model training and tokenization, which would further enhance the accuracy of responses to 

questions regarding the implementation of the Public Procurement Law. 

It is important to note that as the conceptual creator of this concept, I have personally submitted a request to the 

Institute for Artificial Intelligence - AI Institute Novi Sad, Serbia, to collaborate on realizing this idea. 

Keywords: Chatbot, neural networks, Python, Public Procurement Law (ZJN), hyperparameters, modeling, 

BM25Okapi, GPT-2, NLP, wandb, result analysis, model training, virtual consultant, revolution in consulting 

services, dataset. 

 

1.  INTRODUCTION 

The development of AI-powered chatbots has garnered significant attention in recent years. This research paper 

focuses on the development of a chatbot specifically designed to provide virtual consulting support in the application 

of the Public Procurement Law (ZJN) in Serbia. The chatbot utilizes its own dataset. The aim of this AI tool is to 

address the key need for understanding and aligning the needs of procurers and bidders with the ZJN and provide 

value in its application. 

By leveraging extensive textual content available on the internet related to the application of ZJN, the chatbot model 

employs neural networks trained with specific algorithms to generate responses to various queries. The chatbot is 

designed to handle questions related to the definition of public procurement law, procedural inquiries, and ways to 

overcome obstacles during law implementation. By considering the context of the conversation and applying 

efficient text search algorithms, the chatbot provides meaningful and relevant answers. 

This approach paves the way for the chatbot to become a versatile tool with a learning capability in the legal domain, 

adaptable to different legislations and regulatory frameworks. 

In the subsequent sections, we will delve into the methodology, architecture, and evaluation of the chatbot, 

showcasing its potential impact on improving the understanding of ZJN in Serbia while highlighting prospects for 

future expansion into other legal domains. 
 
2. OBJECTIVE OF THE RESEARCH 

The aim of this research is to develop an AI chatbot based on the Transformers libraries that will provide virtual 

consulting support in the implementation of the Public Procurement Law in the Republic of Serbia. Transformers 

have become key tools in natural language processing (NLP) and have shown exceptional ability in generating 

meaningful and coherent responses to language queries. 
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As part of this research, we will utilize popular libraries such as Hugging Face's Transformers and PyTorch. These 

libraries provide a rich set of models based on the Transformer architecture, such as BERT, GPT, and T5. This 

model will be trained on our own dataset related to the application of the Public Procurement Law in the Serbian 

language. 

During the model training process, we will take advantage of GPU acceleration to achieve efficient and fast training. 

We assume access to a Linux Ubuntu server with an NVIDIA GeForce graphics card that has at least 16GB VRAM. 

This enables parallel computation and speeds up the model training process. 

Here is an example Python script for training the model based on the Transformers library: 
 
import wandb 

from transformers import GPT2Tokenizer, GPT2LMHeadModel 

import torch 

 

# Inicijalizacija wandb 

wandb.init(project='chatbot-training') 

 

# Učitavanje i inicijalizacija modela 

tokenizer = GPT2Tokenizer.from_pretrained('gpt2') 

model = GPT2LMHeadModel.from_pretrained('gpt2') 

 

# Definisanje trening podataka 

train_data = [ 

    "Prvi trening primer.", 

    "Drugi trening primer." 

] 

 

# Tokenizacija i kodiranje trening podataka 

input_ids = tokenizer(train_data, padding=True, truncation=True, return_tensors='pt').input_ids 

 

# Treniranje modela 

model.train() 

optimizer = torch.optim.AdamW(model.parameters(), lr=1e-5) 

 

for epoch in range(num_train_epochs): 

    optimizer.zero_grad() 

    outputs = model(input_ids, labels=input_ids) 

    loss = outputs.loss 

    loss.backward() 

    optimizer.step() 

 

    # Praćenje gubitka i epohe pomoću wandb 

    wandb.log({"loss": loss.item(), "epoch": epoch}) 

 

# Evaluacija modela 

eval_data = [ 

    "Primer za evaluaciju 1.", 

    "Primer za evaluaciju 2." 

] 

 

input_ids_eval = tokenizer(eval_data, padding=True, truncation=True, return_tensors='pt').input_ids 

 

model.eval() 

with torch.no_grad(): 

    outputs_eval = model.generate(input_ids_eval) 

 

decoded_outputs = tokenizer.batch_decode(outputs_eval, skip_special_tokens=True) 
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# Prijavljivanje metrike evaluacije pomoću wandb 

wandb.log({"eval_metric": 0.85})  # Ovo je samo ilustrativni primer, treba zameniti sa stvarnim vrednostima 

 

# Završetak wandb sesije 

wandb.finish() 

 
This script utilizes the Transformers libraries for model loading and initialization, data tokenization and encoding, 

model training with the AdamW optimizer, and model evaluation on the evaluation data. In the example, the GPT 

model was used, but you can adapt the script to use other models available in the Transformers libraries. 

Considering the technical aspects of the AI chatbot based on the Transformers libraries, the goal of this research is to 

achieve high accuracy and coherence in the chatbot's responses to various queries related to the application of the 

Public Procurement Law (ZJN). The use of Transformers models enables the chatbot to better understand the context 

of questions and generate relevant and informative answers. 

Furthermore, the research aim is to customize the chatbot for the specific needs of the legal domain, with a focus on 

the Public Procurement Law in the Republic of Serbia. This means that the chatbot will be trained on relevant textual 

materials related to the application of that law. Through training on a large dataset, the chatbot will gain deeper 

understanding of the law, rules, procedures, and challenges that arise in the public procurement process. 

The results of this research are expected to significantly enhance the understanding and application of the Public 

Procurement Law in the Republic of Serbia. The chatbot will be available as an interactive tool that provides users 

with quick access to accurate information and guidelines regarding law implementation. This will be of great benefit 

to both procurers and suppliers in public procurement procedures. 

Additionally, the results of this research can have broader implications for the application of other laws and 

regulations. This AI chatbot can be adapted for use in other legal domains, enabling quick access to accurate 

information and guidelines from different legal contexts. This would improve transparency, efficiency, and 

accessibility of legal support or practices in various contexts. 

Additionally, as part of the goal of this research, we will integrate with the wandb.ai platform to track the learning 

progress through epochs, as well as the crucial factor of loss during model training. Wandb.ai provides advanced 

capabilities for real-time data visualization and analysis, enabling researchers to effectively monitor model 

performance during the training process. This integration allows for detailed monitoring and evaluation of the 

model's progress, enabling further improvement of the chatbot's performance. 

It is expected that this additional tracking and analysis capability through the wandb.ai platform will contribute to a 

deeper understanding of the model training process, identification of areas that require improvement, and 

optimization of the chatbot's performance. Additionally, it allows researchers to transparently showcase research 

results and share them with the AI community. 

Through this research, we strive to develop an advanced AI chatbot to support the application of the Public 

Procurement Law, while simultaneously leveraging the advantages of the wandb.ai platform for tracking and 

evaluating learning progress. The goal is to create an efficient tool that enables users to quickly access accurate 

information, improve understanding of the law, and provide relevant guidance in the public procurement process. 

In the subsequent stages of the research, we will delve into the architecture of the chatbot, training methodology, 

performance evaluation, and explore possibilities for further extending the chatbot to other areas of law. The aim is 

to create a versatile tool that can contribute to enhancing various aspects of the legal profession and facilitate access 

to accurate legal information. 

 
3. RESEARCH METHODOLOGY 

To achieve our goal and develop the AI chatbot, we will follow the following methodology: 

Data selection and preparation: For training the AI chatbot, we use our own dataset related to the application of 

the Public Procurement Law in the Serbian language. These data include relevant textual materials, laws, 

regulations, resolutions, tender documentation, rules, and procedures related to public procurement. The data is 

collected, cleaned, and transformed into a format suitable for model training. 

Model selection and configuration: We base our chatbot on the GPT model from the Transformers library. The 

GPT model is known for its exceptional performance in generating coherent responses to language queries. With the 

GPT model, we can better understand the context of questions and generate relevant and meaningful responses. We 

customize the GPT model to our specific needs and configure it for training. 
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Model training: We use a Python script for training the model based on the Transformers library. The script runs on 

a Linux Ubuntu server with GPU acceleration. We train the model using the AdamW optimizer and minimize the 

loss during the training process. Additionally, we utilize the wandb.ai library to track the loss and epochs during 

training for detailed analysis and evaluation of the model's progress. 

Model evaluation: After training, we evaluate the model using evaluation data that contains various examples of 

queries related to the Public Procurement Law. We generate responses based on the evaluation data and measure the 

quality of the generated answers. We use an evaluation metric, eval_metric, to quantify the model's performance. 

Wandb.ai enables us to track and display these metrics in real-time. 

Integration with the wandb.ai platform: As an additional step, we have integrated our model training script with 

the wandb.ai platform to track the learning progress through epochs, loss, and performance evaluation. Wandb.ai 

provides advanced capabilities for real-time data visualization and analysis, making it easier for researchers to 

monitor model performance during the training process. 
 
import wandb 

from transformers import GPT2Tokenizer, GPT2LMHeadModel 

import torch 

 

# Hiperparametri za treniranje modela 

per_device_train_batch_size = 4  # Broj uzoraka (instance) po uređaju 

num_train_epochs = 5  # Broj epoha treniranja 

learning_rate = 3e-5  # Brzina učenja modela 

weight_decay = 0.1  # Parametar koji pomaže u sprečavanju prenaučenosti modela 

warmup_steps = 200  # Broj koraka treniranja za postepeno povećavanje brzine učenja 

logging_steps = 200  # Broj koraka nakon kojih se izveštava o napretku modela 

max_length = 512  # Maksimalna dužina ulaza u model 

 

# Inicijalizacija wandb 

wandb.init(project='chatbot-training') 

 

# Učitavanje i inicijalizacija modela 

tokenizer = GPT2Tokenizer.from_pretrained('gpt2') 

model = GPT2LMHeadModel.from_pretrained('gpt2') 

 

# Definisanje trening podataka 

train_data = [ 

    "Prvi trening primer.", 

    "Drugi trening primer." 

] 

 

# Tokenizacija i kodiranje trening podataka 

input_ids = tokenizer(train_data, padding=True, truncation=True, return_tensors='pt').input_ids 

 

# Treniranje modela 

model.train() 

optimizer = torch.optim.AdamW(model.parameters(), lr=learning_rate, weight_decay=weight_decay) 

 

total_steps = len(input_ids) * num_train_epochs // per_device_train_batch_size 

warmup_steps = min(warmup_steps, total_steps) 

 

scheduler = torch.optim.lr_scheduler.OneCycleLR(optimizer, max_lr=learning_rate, 

                                                total_steps=total_steps, epochs=num_train_epochs, 

                                                steps_per_epoch=len(input_ids) // per_device_train_batch_size, 

                                                anneal_strategy='linear', warmup_steps=warmup_steps) 

 

for epoch in range(num_train_epochs): 

    optimizer.zero_grad() 
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    outputs = model(input_ids, labels=input_ids) 

    loss = outputs.loss 

    loss.backward() 

    optimizer.step() 

    scheduler.step() 

 

    # Praćenje gubitka i epohe pomoću wandb 

    wandb.log({"loss": loss.item(), "epoch": epoch}) 

 

# Evaluacija modela 

eval_data = [ 

    "Primer za evaluaciju 1.", 

    "Primer za evaluaciju 2." 

] 

 

input_ids_eval = tokenizer(eval_data, padding=True, truncation=True, return_tensors='pt').input_ids 

 

model.eval() 

with torch.no_grad(): 

    outputs_eval = model.generate(input_ids_eval) 

 

decoded_outputs = tokenizer.batch_decode(outputs_eval, skip_special_tokens=True) 

 

# Prijavljivanje metrike evaluacije pomoću wandb 

wandb.log({"eval_metric": 0.85})  # Ovo je samo ilustrativni primer, treba zameniti sa stvarnim vrednostima 

 

# Završetak wandb sesije 

wandb.finish() 

 
Hyperparameters are parameters that are set before the actual model training process and influence the way the 

model is trained. They differ from model parameters that are learned during training. Hyperparameters are used to 

adjust various aspects of the training process and can have a significant impact on the model's performance and 

behavior. Their values are chosen experimentally or based on previous experience. 

Here is a detailed explanation of the additional hyperparameters in our experimental script: 

per_device_train_batch_size: This hyperparameter defines the number of samples (instances) processed in parallel 

on each device during one training iteration. A larger per_device_train_batch_size can speed up the training process 

but may also require more memory on the device. It is important to adjust this parameter based on available 

resources and the size of the training dataset. 

num_train_epochs: This hyperparameter represents the number of epochs, i.e., the number of times the entire 

training dataset will pass through the model. Increasing the number of epochs can help the model learn more 

complex patterns but may also lead to overfitting. It is important to find an appropriate number of epochs that leads 

to optimal results. 

learning_rate: This hyperparameter defines the learning rate of the model, i.e., how quickly the model adapts its 

weights during training. A lower value can result in more precise learning but may prolong the training time, while a 

higher value can speed up training but may skip optimal points. Choosing the right learning rate is crucial for 

achieving good model performance. 

weight_decay: This hyperparameter is used to prevent model overfitting by adding a small additional term to the 

weights during training. It helps reduce the influence of irrelevant or harmful weights. The value of weight_decay 

should be carefully chosen to achieve a proper balance between generalization and fitting to the training data. 

warmup_steps: This hyperparameter defines the number of training steps during which the learning rate gradually 

increases. This technique, known as "warmup," helps the model adapt gradually and avoids abrupt jumps in weights 

that can lead to instability in learning. Properly adjusting this parameter can help improve model convergence. 

logging_steps: This hyperparameter defines the number of steps after which information about the model's progress 

during training will be logged. Reporting on the model's progress can be useful for monitoring performance during 

training and identifying potential issues. For example, you can track the loss over time to check if the model is 
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converging or if overfitting occurs. You can also track evaluation metrics to gain insight into the model's 

performance during training. 

max_length: This hyperparameter represents the maximum length of input sequences that the model will process. If 

an input sequence is longer than max_length, it will be truncated or cut to match the specified length. Limiting the 

length of input sequences can be useful for efficiency reasons as shorter sequences require fewer resources for 

processing. However, care should be taken not to lose too much information with truncated or cut sequences. 

These additional hyperparameters provide the ability to fine-tune the model training process. Adapting these 

parameters based on the specific project requirements, available resources, and data characteristics can help achieve 

better results and more efficient training of an AI chatbot based on the Transformers library. 
 
4. RESEARCH RESULTS 

After completing the training of the model on our custom dataset, we will proceed to testing the model. In our 

research work, we used a script that allows us to process the research results. The script utilizes the GPT-2 language 

model to generate responses to the given text based on the posed questions. 

 
import torch 

from transformers import GPT2LMHeadModel, GPT2Tokenizer 

from rank_bm25 import BM25Okapi 

import nltk 

import transformers 

from transformers import GPT2TokenizerFast 

 

nltk.download("punkt") 

 

model_path = "/putanja/do/modela/model" 

text_path = "/putanja/do/teksta/tekst.txt" 

 

# Učitavanje modela i tokenizera 

model = GPT2LMHeadModel.from_pretrained(model_path) 

 

# Instanciranje tokenizera 

tokenizer = GPT2TokenizerFast.from_pretrained(model_path) 

 

# Postavljanje pad_token 

tokenizer.pad_token = tokenizer.eos_token 

 

# Učitavanje teksta 

with open(text_path, "r") as file: 

    text = file.read() 

 

def generate_answer_with_bm25(question, text): 

    text_sentences = nltk.sent_tokenize(text) 

 

    tokenized_text = [nltk.word_tokenize(sentence) for sentence in text_sentences] 

    bm25 = BM25Okapi(tokenized_text) 

 

    tokenized_question = nltk.word_tokenize(question) 

    scores = bm25.get_scores(tokenized_question) 

    top_n_sentences = sorted(range(len(scores)), key=lambda i: scores[i], reverse=True)[:5] 

 

    relevant_sentences = [text_sentences[index] for index in top_n_sentences] 

    print("Relevant sentences:", relevant_sentences)  # Dodavanjem ovog ispisa možemo prikazati relevantne rečenice 

    return relevant_sentences 

 

def get_answer(question, context): 
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    input_text = f"{question.strip()} {context.strip()}" 

    print(f"Input text: '{input_text}'") 

    encoded_input = tokenizer(input_text, return_tensors="pt", truncation=True, padding=True, max_length=512) 

    generated_ids = model.generate(encoded_input['input_ids'], attention_mask=encoded_input['attention_mask'], 

max_length=512, num_return_sequences=1, no_repeat_ngram_size=2, do_sample=True, temperature=0.7) 

 

    answer = tokenizer.decode(generated_ids[0], skip_special_tokens=True) 

    return answer.split(question)[-1].strip() 

 

# Unos pitanja putem komandne linije u terminalu 

question = input("\n\nUnesite svoje pitanje: ") 

 

# Generisanje najrelevantnije rečenice pomoću BM25 algoritma 

context_sentences = generate_answer_with_bm25(question, text) 

 

# Spojanje rečenica u jedan tekst 

context = ' '.join(context_sentences) 

 

# Generisanje odgovora koristeći GPT-2 model 

answer = get_answer(question, context) 

print("\n\n", answer) 

 
Here are the details of each part of the script and their roles. 

Loading the model and tokenizer: The script first loads the pre-trained GPT-2 model from the specified 

model_path using the GPT2LMHeadModel.from_pretrained() function. Then, it instantiates the tokenizer using the 

GPT2TokenizerFast.from_pretrained() function, which is used to tokenize the input text. 

Loading the text: The script loads the text from the specified text file path given in the text_path variable using the 

open() function and the read() method. The loaded text is stored in the text variable and used as the context for 

generating responses. 

generate_answer_with_bm25(question, text) function: This function utilizes the BM25Okapi algorithm to rank 

relevant sentences in the text based on the given question. First, the text is split into sentences using the 

nltk.sent_tokenize() function, and then each sentence is tokenized into words. Then, the BM25Okapi algorithm from 

the rank_bm25 library is used to calculate the relevance scores between the posed question and each sentence. The 

top five most relevant sentences are selected based on these scores, processed, and stored in the relevant_sentences 

variable. The relevant sentences are displayed using the print("Relevant sentences:", relevant_sentences) statement. 

get_answer(question, context) function: This function uses the GPT-2 model to generate an answer to the given 

question using the provided context. The input text is formed by concatenating the question and the context. 

Tokenization and encoding of the input text are performed using the tokenizer object. Then, the model.generate() 

function is used to generate a response based on the encoded input. The generated response is decoded into readable 

form using the tokenizer.decode() function. The answer is obtained by extracting the part of the generated text that 

comes after the question. 

Question input and answer generation: The script allows the user to input questions via the command line in the 

terminal. After the question is entered, the generated answer is displayed on the standard output. 

This script enables automatic generation of answers to posed questions based on the given text. The combination of 

using the BM25Okapi algorithm for identifying relevant sentences and the GPT-2 model for generating responses 

enables efficient and adaptable text research and analysis within our work. 
 
5. CONCLUSION 

In conclusion, we can observe that the research was focused on various aspects of scientific research, particularly 

emphasizing research methodology, the use of hyperparameters in modeling, and analysis of research results. 

Through different examples and discussions, we have gained a deeper understanding of this concept and its role in 

the scientific research process. 

We have considered the significance of research methodology, which enables a systematic approach to data 

collection, analysis, and interpretation. The importance of hyperparameters in modeling and their role in 

optimization and model tuning is one of the key factors for the success of a model. Through examples, we have 
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explained how hyperparameters affect the performance of a model. We have understood that proper tuning of 

hyperparameters can enhance the efficiency, accuracy, and generalization of the model, while inappropriate 

hyperparameters can lead to overfitting or inadequate accuracy. We have also recognized the importance of critical 

analysis of results, tracking evaluation metrics, and their interpretation. 

Overall, the combination of a rigorous research approach, proper model tuning, and thorough analysis of results 

forms the foundation for the successful development of a chatbot based on our own dataset, aiming to provide virtual 

consultancy support in the implementation of the Public Procurement Law in the Republic of Serbia. 
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