KNOWLEDGE — International Journal
Vol.64.3

OPTIMIZING THE ORDER DISTRIBUTION IN THE CITY OF TETOVO USING
DIJKSTRA’S ALGORITHM

Miranda Xhaferi
University of Tetova, North Macedonia, miranda.xhaferi@unite.edu.mk
Elvir lljazi
HotelKey Inc, United States of America, elvir.iljazi@hotelkeyapp.com

Abstract: The major concerns of e-commerce are the optimization of order dispatch operations and delivery time
prediction. Finding the optimal path is considered an important problem in logistics systems. Efficient order
distribution is crucial for enhancing logistic operations, especially in urban environments like the city of Tetovo.
Therefore, proper prediction and optimization for delivery operations are required for optimal logistics management.
This study proposes a novel approach to optimize order distribution utilizing Dijkstra’s Algorithm, a well-
established method in graph theory and network analysis. To ensure better visibility of the logistics activities and
avoid possible obstacles it is suitable to adopt a graph-based method. By modeling Tetovo city’s road network as a
graph, with intersections as nodes and roads as edges, the algorithm calculates the shortest paths between various
distribution points, such as warehouses and delivery destinations. From the drop points, we will get the information
and data about the delivery address, weight of goods packages, and number of customer packages carried by a
courier in one delivery transfer by truck delivery logistics. In the meantime, the data about the distance from the
distribution points to the delivery destinations will be obtained from the Open Street Maps applications. All the data
above will be used to construct a connected weight graph as an initial model graph. Using a methodology based on
Dijkstra’s Algorithm, we will determine the shortest or fastest route for delivery service in logistics distribution. By
denoting the location of a drop point as a starting point of the route and the road connecting two locations as an edge
where the distance traveled from the drop point to the customers or from one customer to another will represent the
weight in the graph, we can apply the Dijkstra’s algorithm to optimize the mileage of the delivery packages. The
optimization process aims to reduce delivery time and minimize costs while maximizing resource utilization and
customer satisfaction. The implementation of Dijkstra’s Algorithm in this context involves factors like traffic
congestion, road conditions, and delivery priorities. This algorithm works by finding the lowest cost path with
various costs associated with the edges enabling the most efficient way of completing an order within a factory or
warehouse. We represent a JavaScript implementation of this algorithm. Through simulation and empirical
validation, the proposed approach demonstrates significant improvements in order distribution efficiency compared
to traditional methods. This research contributes to the advancement of logistic optimization techniques and
provides practical insights for enhancing urban delivery systems in the city of Tetovo and similar metropolitan areas.
Keywords: Dijkstras’s Algorithm, order distribution, optimization, graph, road network.

1. INTRODUCTION

The growing technological development has offered advanced solutions to ease people’s life such as online
shopping (Wu, 2013; Zhang et. al. 2019). The e-commerce managers, nevertheless, depend on logistics firms to
guarantee the delivery of orders, giving customers the flexibility to select delivery options based on factors such as
distance and waiting time. The major concerns of e-commerce are the optimization of order dispatch operations and
delivery time prediction. Finding the optimal path is considered an important problem in logistics systems. Efficient
order distribution is crucial for enhancing logistic operations, especially in urban environments like the city of
Tetovo. Therefore, proper prediction and optimization for delivery operations are required for optimal logistics
management.

It has been established that any system can be represented as a collection of nodes, where certain pairs of nodes are
linked by particular relationships represented by lines. This concept gave rise to the development of graph theory.
The motivation behind the creation of this theory and the curiosity surrounding it arises from its broad applicability
across various fields.

Due to the extensive range of problems addressed in graph theory, it has played and continues to play a significant
role in addressing numerous issues. The concept of finding the shortest path is recognized as a crucial aspect of
graph theory. Graph theory and network analysis are considered as one of the most important topics regarding
operations research. Research has been continuously conducted to identify optimal algorithms for addressing the
challenge of determining the shortest path. The application of graph theory to various real-world scenarios is
straightforward. When dealing with the shortest path algorithm, the analysis centers on two nodes or vertices along
the path to identify the most optimal solution for the shortest route.

361

mailto:miranda.xhaferi@unite.edu.mk
mailto:elvir.iljazi@hotelkeyapp.com

KNOWLEDGE — International Journal
Vol.64.3

Through our research, we have utilized OpenStreetMap and the Leaflet library to implement Dijkstra’s Algorithm, a
well-established method in graph theory and network analysis and a powerful tool for finding the shortest paths in a
network. To ensure better visibility of the logistics activities and avoid possible obstacles it is suitable to adopt a
graph-based method. By modeling Tetovo city’s road network as a graph, with intersections as nodes and roads as
edges, the algorithm calculates the shortest paths between various distribution points, such as warehouses and
delivery destinations.

2. DIJKSTRA’S ALGORITHM

Dijkstra’s algorithm, developed by E.W. Dijkstra, is a method for finding the shortest path in a given graph (Morris,
2016) (Zhang et. al., 2005), used to solve the single-source shortest-path problem when all edges have non-negative
weights.

In a graph, the algorithm starts at the initial node and grows a tree that ultimately spans all nodes that can be
accessed from the initial node.

The algorithm operates in an iterative manner, in which at each iteration, it selects the node with the shortest
distance path from the initial node and recalculates the path distance for the remaining unvisited nodes.

This process will be repeated until the destination node is visited (Zhang et. al., 2005).

One of the most important advantages of Dijkstra’s algorithm is that it does not visit the remaining unwanted nodes
when the intended destination node is reached (Chan et. al., 2016).

Code of Dijkstra’s algorithm is given below:
export default function dijkstra(cityMap, startPoint) : {distances: {..} , paths: 1} {4 Show usages Elvir lljazi *
// Create an object to store the shortest distance from the start point to every end points
let distances :{} = {}, paths = [];

// A set to keep track of all visited points

let visitedPoints : Set <any > = new Set();
// Get all the points of the city Map
let points : string [] = Object.keys(cityMap);

// Initially, set the shortest distance to every node as Infinity
points.forEach((point : string) : number => distances[point] = Infinity)
// The distance from the start point to itself is @

distances[startPoint] = 0;

// And path is start point coordinates

paths[startPoint] = startPoint;

// Loop until all points are visited
while (points.length) {
// Sort points by distance and pick the closest unvisited one
points.sort(compareFn: (a : string , b :string) => distances[a] - distances[bl);
let closestPoint : string \ undefined = points.shift();
// Mark the chosen point as visited
visitedPoints.add(closestPoint);
// Iterate for each neighboring point of the current point
for (let neighborPoint in cityMap[closestPoint]) {
// If the neighbor hasn't been visited yet
if (lvisitedPoints.has(neighborPoint)) {
// Calculate tentative distance to the neighboring node
let newDistance = distances[closestPoint] + cityMap[closestPoint][neighborPoint].distance;
// If the newly calculated distance is shorter than the previously known distance to this neighbor
if (newDistance < distances[neighborPoint]) {
// Update the shortest distance to this neighbor
distances[neighborPoint] = newDistance;

paths[neighborPoint] = paths[closestPoint] + "->" + neighborPoint;

Source: From https://github.com/elviriljazi/dijkstra-in-tetovo/blob/main/utilities/dijkstra.js

On the other hand, the disadvantage of Dijkstra’s algorithm lies in its challenging implementation in computer
programs when dealing with a large number of nodes, as this can lead to significant consumption of CPU memory
during computation. (Aghaei et. al., 2009).

362

https://github.com/elviriljazi/dijkstra-in-tetovo/blob/main/utilities/dijkstra.js

KNOWLEDGE — International Journal
Vol.64.3

The primary objective of the shortest path algorithm is to provide quick responses even with extensive input graphs.
Dijkstra’s algorithm is utilized to efficiently determine the shortest path between two vertices.
The implementation of JavaScript programming language is essential for identifying the shortest path and meeting
related criteria. This program, known as the shortest path optimization system, is further explained through a Unified
Modeling Language (UML) class diagram using JavaScript. It is important to note that the Dijkstra algorithm is
limited to positive weight graphs and cannot accommodate negative edges, with the exact path remaining unknown.

3. PROBLEM STATEMENT

During the dispatching process, the identification of the most optimal route remains a notable issue, potentially
originating from different real-world situations. Logistics companies must optimize their operations, particularly in
the delivery of goods, to reduce waiting time and eliminate unnecessary tasks, consequently improving customer
satisfaction. In a dispatching problem within an urban area, nodes denote locations where an order can be transferred
to other points along a specific route. In this specific context, the edges within the graph represent the roads that link
two nodes. The weights assigned to these edges typically denote factors such as distance, the cost of transportation,
the time, etc.

In this research, the experiment has been conducted utilizing a specialized JavaScript application.

The study was designed to evaluate the proposed algorithm under a variety of conditions, including the use of large
versus small sample data, long versus short travel distances, and different numbers of generations in algorithm
implementation.

To ensure precision in the results, the algorithm was executed 20 times for each experiment case, followed by the
computation of the average value as the conclusive outcome. The comparison between large and small data sets
involved testing the algorithm with the same start and end points but utilizing distinct data sets.

In our study, we drew inspiration from the city of Tetovo as an exemplar for modeling our logistics network.
Tetovo, located in the western part of North Macedonia, offers a diverse urban landscape characterized by various
transportation challenges and logistical intricacies. By leveraging Tetovo as a reference point, we aimed to capture
the complexities of real-world logistics scenarios within our simulation.

By representing the road network of Tetovo city as a graph where intersections serve as nodes and roads as edges,
the algorithm computes the most efficient routes connecting different points of distribution, such as warehouses and
delivery locations.

The logistics network we developed closely mirrors the road infrastructure and geographical layout of Tetovo,
incorporating 8,666 roads interconnecting 9,681 points. This emulation of Tetovo's urban environment enables us to
simulate and analyze logistics operations within a context that closely resembles real-world conditions.

Drawing from Tetovo as a case study provides valuable insights into the challenges and opportunities inherent in
urban logistics management. By aligning our simulation with the characteristics of Tetovo, we can derive practical
implications and recommendations for improving logistics efficiency in similar urban settings.

The utilization of Tetovo as an example underscores the applicability and relevance of our research findings to urban
logistics management practices. This approach enriches the authenticity and validity of our study, enhancing its
potential impact on the field of logistics optimization.

Incorporating insights gleaned from Tetovo into our research paper elucidates the contextual basis of our simulation
and underscores the practical significance of our findings within the realm of urban logistics management.

The model being studied is associated with a package delivery service conducted by a courier

starting from SabahCargo drop-off point located at Vidoe Smilevski Bato. From the drop points, we will get the
information and data about the delivery address, weight of goods packages, and number of customer packages
carried by a courier in one delivery transfer by truck delivery logistics.

The courier serves more than 15 clients on a single delivery trip, depending on demand density. Specifically, the
analysis focuses on serving 17 customers across 17 locations in Tetovo City regions. In the meantime, the data about
the distance from the distribution points to the delivery destinations will be obtained from the Open Street Maps
applications. Utilizing this data, an initial model graph is developed, representing a connected weighted graph. Here,
each drop-off point or customer location serves as a vertex, while the roads between locations act as edges in the
graph. The weight assigned in this graph signifies the distance covered from the drop-off point to customers or
between different customers. Then the Dijkstra algorithm is applied to the graph with the drop point as the starting
point, ensuring that the courier visits all customers and returns to the drop point. The research methodology flow
begins with the collection of customer location data, followed by the conversion of location data into distance data
between locations. Afterward, this data is employed for the creation of an initial model which is shown as a
connected weighted graph. The Dijkstra algorithm is then applied to this graph to determine the shortest path that
covers all clients and returns to the initial drop-off point.

363

KNOWLEDGE — International Journal
Vol.64.3

This route can be a closed path (cycle) or a closed trail (circuit) within the initial model graph.

The construction of the initial model graph involves data on customer locations, road connectivity, road conditions,
and distances between locations, with roads suitable for passage. In cases where two locations are not directly
connected by a road, no edge is present between them in the graph. The model graph, denoted as G, is a connected
weighted graph.

Figure 1. presents a visual depiction of the logistics network inspired by infrastructure and geographical layout of
Tetovo. The green point on the map represents the dispatching center, designated as the focal point for logistics
operations. Surrounding the dispatching center are 10 customer nodes, symbolizing various delivery destinations
within the urban area. Each node is strategically positioned to reflect the distribution of orders across Tetovo. The
visualization provides a comprehensive overview of the logistics network, showcasing the connectivity between the
dispatching center and customer nodes via the road network.

Figure 1. The subgraph G’ with an example route.

Source: From https://dijkstra-in-tetovo.vercel.app/

4. SIMULATION RESULTS AND ANALYSIS

This section discusses the findings derived from implementing the algorithm simulations. Dijkstra’s algorithm is
used to determine the solution for single-source, single-destination, and single-pair shortest-path problems. Notably,
the Dijkstra algorithm is particularly effective in scenarios with positive weights within directed or undirected
graphs, especially when the graph contains a substantial number of nodes. It is worth mentioning that the
performance of the Dijkstra algorithm improves when dealing with a large number of nodes.

Our findings align with those of previous studies. For instance, (Singh & Tripathi, 2018), demonstrated that Dijkstra
is highly effective across a wide range of nodes. Similarly, (Sapundzhi & Popstoilov, 2018) found that for a larger
number of nodes, Dijkstra's algorithm exhibits superior efficiency. Furthermore, (Lacorte & Chavez, 2018),
observed that Dijkstra’s algorithm consistently yields shorter processing times for graphs of various sizes.

We conducted computational experiments to evaluate the performance of the Dijkstra algorithm in optimizing
logistics operations within this simulated network. The results of these experiments, including the calculation time
for each route, are summarized in the table below:

364

https://dijkstra-in-tetovo.vercel.app/

KNOWLEDGE — International Journal
Vol.64.3

Table 1. Average running time of the algorithm

Nodes Execution Time(ms)
5 5327
10 9801
15 14102
20 18293

Source: Adapted from Comparative Analysis between Dijkstra and Bellman-Ford Algorithms in Shortest Path
Optimization by Samah et.al., 2020,
https://www.researchgate.net/publication/345332893 Comparative_Analysis_between Dijkstra_and Bellman-
Ford_Algorithms_in_Shortest Path Optimization

5. CONCLUSIONS

By utilizing simulation and empirical validation, the proposed method showcases notable enhancements in the
effectiveness of order distribution processes when compared to traditional methods. For the simulations that were
utilized, we developed a web application https://dijkstra-in-tetovo.vercel.app/ .

This research contributes to the advancement of logistic optimization techniques and provides practical insights for
enhancing urban delivery systems in the city of Tetovo and similar metropolitan areas and will be an open source for
anyone interested in this algorithm in future development and research. Our project aims to contribute valuable
insights to the field of logistics and transportation planning. By applying Dijkstra’s Algorithm to the unique urban
landscape of Tetovo, we have identified strategies to elevate order distribution procedures, reduce delivery times,
and minimize resource wastage. It is worth mentioning that the performance of the Dijkstra algorithm improves
when dealing with a large number of nodes.

REFERENCES

Aghaei, M.R.S., Zukarnain, Z.A., Mamat, A., & Zainuddin, H. (2009). “A Hybrid Algorithm for Finding Shortest
Path in Network Routing”, Journal of Theoretical and Applied Information Technology.

Beker, 1., Jevtic, V., & Dobrilovic, D. (2012). “Shortest-path algorithm as a tools for inner transportation
optimization”, International Journal of Industrial Engineering and Management (IJIEM), Vol.3 No 1, pp. 39-
45.

Chan, S., Adnan, N., Sukri, S.S., & Zainon, W.M. (2016). An experiment on the performance of shortest path
algorithm.Knowledge Management International Conference (KMICe) 2016, 29 — 30 August 2016, Chiang
Mai, Thailand.

Lacorte, A. M., & Chavez, E. P. (2018). Analysis on the Use of A* and Dijkstra’s Algorithms for Intelligent School
Transport Route Optimization System. Proceedings of the 4th International Conference on Human-Computer
Interaction and User Experience in Indonesia, CHIuXiD ’18 - CHIuXiD ’18. d0i:10.1145/3205946.3205948.

Lusiani, A., Samsiyah, S., & Sartika, P.E. (2023). DIJKSTRA ALGORITHM IN DETERMINING THE
SHORTEST ROUTE FOR DELIVERY SERVICE BY J&T EXPRESS IN BANDUNG. Lebesgue: Jurnal
IImiah Pendidikan Matematika, Matematika dan Statistika. Vol. 4, No. 2.

Morris, I, (2016, February 15) 10.2 Dijkstra’s Algorithm. Available from:
https://www.cs.auckland.ac.nz/software/ AlgAnim/dijkstra.html.

Samah, W.G., Salim, A. , Ibrahim, R., Saringat, M. Z., Jamel, S., & Wahab, J.A. (2020). Comparative Analysis
between Dijkstra and Bellman-Ford Algorithms in Shortest Path Optimization. 10P_Conference Series:
Materials Science and Engineering, Volume 917, International Conference on Technology, Engineering and
Sciences (ICTES). Penang, Malaysia.

Sapundzhi, F. I., & Popstoilov, M. S. (2018). Optimization algorithms for finding the shortest paths. Bulgarian
Chemical Communications, Volume 50, Special Issue B, (pp. 115 — 120).

Singh, J.B., & Tripathi, R.C. (2018). Investigation of Bellman—Ford Algorithm, Dijkstra's Algorithm for suitability
of SPP. IJEDR , Volume 6, Issue 1, ISSN: 2321-9939 .

Wu, I. L. (2013). The antecedents of customer satisfaction and its link to complaint intentions in online shopping:
An integration of justice, technology, and trust. Int. J. Inf. Manage., vol. 33, no. 1, pp. 166-176.

365

https://www.researchgate.net/publication/345332893_Comparative_Analysis_between_Dijkstra_and_Bellman-Ford_Algorithms_in_Shortest_Path_Optimization
https://www.researchgate.net/publication/345332893_Comparative_Analysis_between_Dijkstra_and_Bellman-Ford_Algorithms_in_Shortest_Path_Optimization
https://dijkstra-in-tetovo.vercel.app/
https://www.cs.auckland.ac.nz/software/AlgAnim/dijkstra.html
https://iopscience.iop.org/journal/1757-899X
https://iopscience.iop.org/journal/1757-899X
https://iopscience.iop.org/volume/1757-899X/917
https://iopscience.iop.org/issue/1757-899X/917/1
https://iopscience.iop.org/issue/1757-899X/917/1

KNOWLEDGE — International Journal
Vol.64.3

Zhang, F., Qiu, A., & Li, Q. (2005). Improve on Dijkstra Shortest Path Algorithm for Huge Data. Chinese academy
of surveying and mapping.

Zhang, N., Yang, Y., Zheng, Y., & Su, J. (2019) . Module partition of complex mechanical products based on
weighted complex networks. J. Intell. Manuf., vol. 30, no. 4, pp. 1973-1998.

366

