EXPERIMENTAL MODELS AND TESTS FOR NOCICEPTIVE AND NEUROPATHIC PAIN EVALUATION
Keywords:
neuropathic pain, nociceptive pain, animal models, experimental tests, rodentsAbstract
Pain, both acute and chronic, is an extremely prevalent symptom and remains a significant health problem with a great impact on function and quality of life. There are many experimental tests and models for pain evaluation, which are used during the preclinical characterization of drugs. Rodents are widely used to study the pathophysiology of pain as studies in humans are difficult to perform and ethically limited. The use of animal models can reveal the mechanisms, side-effects, and new effective therapeutic possibilities for patients suffering from acute and chronic pain syndromes, which could alter our clinical outlook. The wide range of animal models allows exploration of pain mediators and mechanisms, different pain etiologies and manifestations, and could reveal the mode of action of analgesics. In this review, the most commonly used animal models and experimental tests used in the study of nociceptive and neuropathic pain are discussed. For nociceptive pain examination, stimulus-evoked methods and temperature preference tests are used. The tests with a mechanical stimulus include the Paw pressure test, Pin-prick test, Incapacitance Test, and Von Frey Test. Tests with a chemical stimulus, such as the Formalin test and Abdominal writhing test are described. The tests with a heat stimulus include the Hot Plate Test, Plantar Test, and Tail‐Flick Test. Acetone Spray Test like a test with a cold stimulus is also summarized. To study neuropathic pain, the ideal methods should induce solely sensory neurons dysfunction, such as allodynia and hyperalgesia for short periods. Models of diabetic polyneuropathy, chemotherapy-induced painful peripheral neuropathy (CIPN), chronic constriction injury of n. ischiadicus, and spinal nerve ligation in rats are described. CIPN is most often induced by vinca alkaloids (vinblastine, vincristine), platinum derivatives (cisplatin, oxaliplatin, carboplatin), and taxanes (docetaxel, paclitaxel). Depending on the chemotherapeutic agent used, CIPN can be pure sensory neuropathy or mixed sensorimotor neuropathy with or without autonomic nervous system dysfunction. The occurrence and severity of the neurotoxicity depend on the type of drug used and are dose-dependent. The rate of CIPN correlates to the cumulative dose delivered and dose per treatment cycle. For neuropathic pain examination, tests with a mechanical stimulus (Von Frey Hair Test), a heat stimulus (Heath Plantar Test), and a cold stimulus (Cold plate test) are used. The methodology of each animal model is specific and results can be greatly influenced even by slight changes related to the study design. Different experimental models for pain evaluation were developed over the years and the search for new methods will continue in the future.
References
Апостолова, Е. (2020). Експериментални модели на зависимост и болка при животни. ИПК „Екобелан“-Асеновград, ISBN 978-619-7561-17-3.
Костадинов, И. (2013). Кломипрамин и флуоксетин – аналгетично и противовъзпалително действие в експеримент. Автореферат на дисертация за присъждане на образователна и научна степен „Доктор“. Пловдив, Медицински Университет, Медицински факултет.
Краевски, П. (2011). Модулация от нестероидни и стероидни адюванти на ноцицепцията и ефекта на някой аналгетици. Невропатични и възпалителни експериментални модели и клинични наблюдения. Автореферат на дисертация за присъждане на образователна и научна степен „Доктор“. София, Българска Академия на Науките, Институт по невробиология.
Abboud, C., Duveau, A., Bouali-Benazzouz, R., Massé, K., Mattar, J., Brochoire, L., Fossat, P., Boué-Grabot, E., Hleihel, W., & Landry, M. (2021). Animal models of pain: Diversity and benefits. Journal of neuroscience methods, 348, 108997.
Authier, N., Balayssac, D., Marchand, F., Ling, B., Zangarelli, A., Descoeur, J., Coudore, F., Bourinet, E., & Eschalier, A. (2009). Animal models of chemotherapy-evoked painful peripheral neuropathies. Neurotherapeutics : the journal of the American Society for Experimental NeuroTherapeutics, 6(4), 620–629.
Authier, N., Coudore, F., Eschalier, A., & Fialip, J. (1999). Pain related behaviour during vincristine-induced neuropathy in rats. Neuroreport, 10(5), 965–968.
Authier, N., Fialip, J., Eschalier, A., & Coudoré, F. (2000a). Assessment of allodynia and hyperalgesia after cisplatin administration to rats. Neuroscience letters, 291(2), 73–76.
Authier, N., Gillet, J. P., Fialip, J., Eschalier, A., & Coudore, F. (2003). A new animal model of vincristine-induced nociceptive peripheral neuropathy. Neurotoxicology, 24(6), 797–805.
Authier, N., Gillet, J. P., Fialip, J., Eschalier, A., & Coudore, F. (2003b). An animal model of nociceptive peripheral neuropathy following repeated cisplatin injections. Experimental neurology, 182(1), 12–20.
Authier, N., Gillet, J. P., Fialip, J., Eschalier, A., & Coudore, F. (2000). Description of a short-term Taxol-induced nociceptive neuropathy in rats. Brain research, 887(2), 239–249.
Bennett, G. J. (2010). Pathophysiology and animal models of cancer-related painful peripheral neuropathy. The oncologist, 15 Suppl 2, 9–12.
Cata, J. P., Weng, H. R., & Dougherty, P. M. (2008). Behavioral and electrophysiological studies in rats with cisplatin-induced chemoneuropathy. Brain research, 1230, 91–98.
Cavaletti, G., & Marmiroli, P. (2010). Chemotherapy-induced peripheral neurotoxicity. Nature reviews. Neurology, 6(12), 657–666.
Chung, J. M., Kim, H. K., & Chung, K. (2004). Segmental spinal nerve ligation model of neuropathic pain. Methods in molecular medicine, 99, 35–45.
Deuis, J. R., Dvorakova, L. S., & Vetter, I. (2017). Methods Used to Evaluate Pain Behaviors in Rodents. Frontiers in molecular neuroscience, 10, 284.
Dina, O. A., Chen, X., Reichling, D., & Levine, J. D. (2001). Role of protein kinase Cepsilon and protein kinase A in a model of paclitaxel-induced painful peripheral neuropathy in the rat. Neuroscience, 108(3), 507–515.
Hough, S.W., & Kanner, R.M. (2004). Cancer pain syndromes. Principles and practice of pain medicine, 456-464.
Joseph, E. K., Chen, X., Bogen, O., & Levine, J. D. (2008). Oxaliplatin acts on IB4-positive nociceptors to induce an oxidative stress-dependent acute painful peripheral neuropathy. The journal of pain, 9(5), 463–472.
Kaliyaperumal, S., Wilson, K., Aeffner, F., & Dean, C., Jr. (2020). Animal Models of Peripheral Pain: Biology Review and Application for Drug Discovery. Toxicologic pathology, 48(1), 202–219.
Kostadinov, I., Delev, D., Kostadinova, I., & Georgieva-Kotetarova, M. (2014). Involvement of 5-HT2 and 5-HT3 receptors in the analgesic effect of clomipramine according to the formalin pain test in rats. Medicine, 4(1).
Ling, B., Coudoré-Civiale, M. A., Balayssac, D., Eschalier, A., Coudoré, F., & Authier, N. (2007a). Behavioral and immunohistological assessment of painful neuropathy induced by a single oxaliplatin injection in the rat. Toxicology, 234(3), 176–184.
Ling, B., Authier, N., Balayssac, D., Eschalier, A., & Coudore, F. (2007). Behavioral and pharmacological description of oxaliplatin-induced painful neuropathy in rat. Pain, 128(3), 225–234.
Meunier, C. J., Burton, J., Cumps, J., & Verbeeck, R. K. (1998). Evaluation of the formalin test to assess the analgesic activity of diflunisal in the rat. European journal of pharmaceutical sciences: official journal of the European Federation for Pharmaceutical Sciences, 6(4), 311–316.
Murtagh, F.E., & Higginson, I.J. (2007). Cancer neuropathic pain. Neuropathic pain, 67-75.
Nozaki-Taguchi, N., Chaplan, S. R., Higuera, E. S., Ajakwe, R. C., & Yaksh, T. L. (2001). Vincristine-induced allodynia in the rat. Pain, 93(1), 69–76.
Pachman, D. R., Barton, D. L., Watson, J. C., & Loprinzi, C. L. (2011). Chemotherapy-induced peripheral neuropathy: prevention and treatment. Clinical pharmacology and therapeutics, 90(3), 377–387.
Park, S. B., Lin, C. S., Krishnan, A. V., Goldstein, D., Friedlander, M. L., & Kiernan, M. C. (2009). Oxaliplatin-induced neurotoxicity: changes in axonal excitability precede development of neuropathy. Brain: a journal of neurology, 132(Pt 10), 2712–2723.
Polomano, R. C., Mannes, A. J., Clark, U. S., & Bennett, G. J. (2001). A painful peripheral neuropathy in the rat produced by the chemotherapeutic drug, paclitaxel. Pain, 94(3), 293–304.
Quasthoff, S., & Hartung, H. P. (2002). Chemotherapy-induced peripheral neuropathy. Journal of neurology, 249(1), 9–17.
Randall, L. O., & Selitto, J. J. (1957). A method for measurement of analgesic activity on inflamed tissue. Archives internationales de pharmacodynamie et de therapie, 111(4), 409–419.
Roglio, I., Bianchi, R., Camozzi, F., Carozzi, V., Cervellini, I., Crippa, D., Lauria, G., Cavaletti, G., & Melcangi, R. C. (2009). Docetaxel-induced peripheral neuropathy: protective effects of dihydroprogesterone and progesterone in an experimental model. Journal of the peripheral nervous system: JPNS, 14(1), 36–44.
Seltzer, Z., Dubner, R., & Shir, Y. (1990). A novel behavioral model of neuropathic pain disorders produced in rats by partial sciatic nerve injury. Pain, 43(2), 205–218.
Siau, C., Xiao, W., & Bennett, G. J. (2006). Paclitaxel- and vincristine-evoked painful peripheral neuropathies: loss of epidermal innervation and activation of Langerhans cells. Experimental neurology, 201(2), 507–514.
Stillman, M., & Cata, J.P. (2006). Management of chemotherapy-induced peripheral neuropathy. Curr Pain Headache Rep., 10, 279 –287.
Turner, P. V., Pang, D. S., & Lofgren, J. L. (2019). A Review of Pain Assessment Methods in Laboratory Rodents. Comparative medicine, 69(6), 451–467.
Vera, G., Chiarlone, A., Cabezos, P. A., Pascual, D., Martín, M. I., & Abalo, R. (2007). WIN 55,212-2 prevents mechanical allodynia but not alterations in feeding behaviour induced by chronic cisplatin in the rat. Life sciences, 81(6), 468–479.
Weng, H. R., Cordella, J. V., & Dougherty, P. M. (2003). Changes in sensory processing in the spinal dorsal horn accompany vincristine-induced hyperalgesia and allodynia. Pain, 103(1-2), 131–138.
Windebank, A. J., & Grisold, W. (2008). Chemotherapy-induced neuropathy. Journal of the peripheral nervous system: JPNS, 13(1), 27–46.
Xie, W. (2011). Assessment of pain in animals. In animal models of pain. Humana press, ISSN 0893-2336.
Zheng, H., Xiao, W. H., & Bennett, G. J. (2011). Functional deficits in peripheral nerve mitochondria in rats with paclitaxel- and oxaliplatin-evoked painful peripheral neuropathy. Experimental neurology, 232(2), 154–161.