TESTING TECHNOLOGIES OF HYDROAGGREGATE FOR THE PURPOSE OF ASSESSMENT OF VIBRATIONAL STATE IN EXPLOITATION

Authors

  • Zoran Janjić The Academy of Applied Technical and Preschool Studies, Serbia

DOI:

https://doi.org/10.35120/kij5403463j

Keywords:

HPP, pipe turbines, hydraulics, tests

Abstract

Vibrations of the basic assemblies of the hydrogen generator cause variable forces and loads that occur
during operation and depending on the operating mode. This paper presents some test results performed on a Kaplan
vertical type turbine. Measurements were performed at 3 measuring points (N1, N2 and N3; Figure 1) using noncontact
sensors, placed in pairs under 90 at each measuring point. Based on the measurements performed and the
analysis of the obtained results, the following can be concluded: hydraulic tests of the turbine were performed on
instruments that ensure high accuracy of these measurements. The tables show the absolute vibrations on the
bearings of the hydro unit, as well as the vibrations of the turbine guide bearing

References

Адамовић, Ж. (2008). Техничка дијагностика, Завод за уџбенике и наставна средства, Београд (ISBN 978-86-17-06434-X).

Адамовић, Ж., & Илић, Б. (2013). Наука о одржавању техничких система, Српски академски центар, Нови Сад.

Вуловић, С. (2017). Интегрисани модел одржавања заснован на успостављању законитости промене механичких вибрација и њихов утицај на прогностику стања ротационих машина (докторска дисертација), Универзитет у Новом Саду.

Вуловић, С., Вуловић, М., Петров, Т., Савић, Д., & Адамовић, Ж. (2017). Оцена вибрационог стања генератора, Мајски скуп одржавалаца Србије „Бука, вибрације и проактивно одржавање машина“ (уводно предавање), Врњачка Бања.

Студија: мониторинг хидроагрегата за дијагностику, Институт „Никола Тесла“, Београд, 2012.

Cornel, H., et al. (2017). Vibration analysis of a hydro generator for different operating regimes. In: IOP Conference Series Materials Science and Engineering 163(1):012030, DOI:10.1088/1757-899X/163/1/012030

ISO 7919-5:2005, Mechanical vibration-Evaluation of machine vibration by measurement on rotating shaft-Part 5.

Härtel, P. (2017). Aggregation Methods for Modelling Hydropower and Its Implications for a Highly Decarbonised Energy System in Europe. In: Energies 10(11), DOI:10.3390/en10111841

Kougis, I., et al. (2019). Analysis of emerging technologies in the hydropower sector. In: Renewable and Sustainable Energy Reviews 113, DOI:10.1016/j.rser.2019.109257

Perić, M., Buenker, R., & Peyerimhoff, S. (2011). Theoretical study of the vibrational structure of the 1(n,π*) transition in diimide: potential curves and Franck–Condon analysis. In: Canadian Journal of Chemistry 55(9):1533-1545, DOI:10.1139/v77-214

Ro, T. (2016). Извештај и вибродијагностици турбо-генераторског постојења у ТЕ Костолац-Дрмно, Блок 1, Београд.

Saberi, O., et al. (2021). New Technology to Increase Hydropower Plant Operational Flexibility, DOI:10.5923/j.ijhe.20211001.01

Xu, J. (2015). Hydropower development trends from a technological paradigm perspective. In: Energy Conversion and Management 90:195-206, DOI:10.1016/j.enconman.2014.11.016

Downloads

Published

2022-09-30

How to Cite

Janjić, Z. (2022). TESTING TECHNOLOGIES OF HYDROAGGREGATE FOR THE PURPOSE OF ASSESSMENT OF VIBRATIONAL STATE IN EXPLOITATION. KNOWLEDGE - International Journal , 54(3), 463–470. https://doi.org/10.35120/kij5403463j