BIOLOGICAL AGE ESTIMATION OF THE PARTICIPANTS IN THE 32-ND BULGARIAN ANTARCTIC EXPEDITION

Authors

  • Lubomir Petrov National Sports Academy, Bulgaria
  • Albena Alexandrova National Sports Academy, Bulgaria

Keywords:

Biological Age, blood markers, Bulgarian Antarctic Expedition, Mortality Risk

Abstract

It is assumed that Biological Age better evaluates the physiological deterioration of the organism than
chronological age. Specific blood biomarkers have shown the ability to detect differences in Biological Age, even in
young and healthy individuals, before the development of disease or phenotypic manifestations of accelerated aging.
This work aimed to calculate the Biological Age of the participants in the 32nd Bulgarian Antarctic Expedition,
assessing their objective physiological state and formatting recommendations in case of increased levels of health
risk. Traveling to Antarctica and staying there is a prerequisite for a rise of the participants’ stress levels, related to
logistics, the change of the social environment, and work in adverse climatic conditions. Data indicated that
exposure to stress increased the Biological Age in humans, but it decreased after the stress resolved. This research
involved 28 individuals, 22 men, and 6 women, at a mean age of 43.04 ± 8.19 years (between 26 and 56 years old).
All participants resided at the Bulgarian Antarctic base "St. Kliment Ohridski" at Livingstone Island for 30 days.
The journey to the base involved several connecting flights passing through different time zones, and finally, with
the Bulgarian naval research vessel “St. Cyril and Methodius” (RSV 421) across the Drake Passage and in the
reverse order when returning. Blood samples were taken from the participants twice (before and after the
expedition). Sera was obtained after natural coagulation and centrifugation at 3000 rpm per 20 min. and the
following markers were measured in it: White Blood Cells (WBC), Mean Corpuscular Volume (MCV), Red Cell
Distribution Width (RDW), Lymphocytes% (LYM%), Glucose (Glu), Creatinine (Crt), Albumin (Alb), Alkaline
Phosphatase (ALP), and C-Reactive Protein (CRP). Biological Age and the 10-year Mortality Risk were calculated
according to the formula of Levine et al., (2018) with the correction made by Liu et al. (2018). The results showed a
variation of the Biological Age values between 10.3 years younger and 8.4 years older (mean 3.52 ± 4.06 years
younger) than the chronological age of the individuals before the expedition and 15.7 years younger and 1.3 years
older (mean 6.02 ± 4.05 years younger) than the chronological age of the individuals after returning. Concerning the
10-year Mortality Risk, the results showed a variation between 0.26% and 5.49% (mean 2.05 ± 1.44%) before the
expedition and between 0.24% and 4.33% (mean 1.73 ± 1.14%) after the expedition. Both indicators decreased
statistically significantly after the expedition, with about 2.5 years for the Biological Age and about 0.3% for the 10-
year Mortality Risk. In conclusion, the obtained results indicated that participation in the Bulgarian Antarctic
expeditions does not lead to an increase in Biological Age and 10-year Mortality Risk. In this study, the Biological
Age of participants in an Antarctic expedition was calculated for the first time. Likely, the results for Biological Age
and 10-year Mortality Risk in other more severe conditions at the Antarctic mainland closer to the Pole may differ
significantly. It can be recommended that blood samples for calculating the Biological Age be also taken during the
stay at the polar base, which will allow a complete picture of the stressful conditions of polar expeditions to be
obtained.

References

Bartone, P. T., Krueger, G. P. & Bartone, J. V. (2018). Individual differences in adaptability to isolated, confined, and extreme environments. Aerosp. Med. Hum. Perform. 89, 536–546

Bortz, J., Guariglia, A., Klaric, L., Tang, D., Ward, P., Geer, M., Chadeau-Hyam, M., Vuckovic, D., & Joshi, P. K. (2023). Biological age estimation using circulating blood biomarkers. Communications biology, 6(1), 1089. https://doi.org/10.1038/s42003-023-05456-z

Del Coco, L., Greco, M., Inguscio, A., Munir, A., Danieli, A., Cossa, L., Musarò, D., Coscia, M. R., Fanizzi, F. P., & Maffia, M. (2023). Blood Metabolite Profiling of Antarctic Expedition Members: An 1H NMR Spectroscopy-Based Study. International journal of molecular sciences, 24(9), 8459. https://doi.org/10.3390/ijms24098459

Domuschieva-Rogleva G., Iancheva T., & Shopov A. (2017). Dynamics of anxiety and perceived stress among the participants in the ххv antarctic expedition. Journal of Applied Sports Sciences, 2, 31-41

Frenck, R. W. Jr, Blackburn, E. H. & Shannon, K. M. (1998). The rate of telomere sequence loss in human leukocytes varies with age. Proc. Natl Acad. Sci. USA 95, 5607–5610.

Gom, I., Fukushima, H., Shiraki, M., Miwa, Y., Ando, T., Takai, K., & Moriwaki, H. (2007). Relationship between serum albumin level and aging in community-dwelling self-supported elderly population. Journal of nutritional science and vitaminology, 53(1), 37–42. https://doi.org/10.3177/jnsv.53.37

Horvath, S. & Raj, K. (2018). DNA methylation-based biomarkers and the epigenetic clock theory of ageing. Nat. Rev. Genet. 19, 371–384.

Iancheva T., Boyanov D., & Panayotov N. (2023). Need for Security and Stress Coping Strategies of Participants from The XXXI Bulgarian Antarctic Expedition. Strategies for Policy in Science and Education 31, (5s), 9-22.

Jia, L., Zhang, W., & Chen, X. (2017). Common methods of biological age estimation. Clinical interventions in aging, 12, 759–772. https://doi.org/10.2147/CIA.S134921

Johnsen, B.H., Gjeldnes, R. (2023). Back to the basics of polar expeditions: personality hardiness, fear, and nutrition in polar environments. Saf. Extreme Environ. 5, 47–58 https://doi.org/10.1007/s42797-023-00068-6

Johnsen, B.H., Gjeldnes, R., Neteland, H.O.M., Thayer, J.F., & Phillips, T. (2020). Militærpsykologisk forskning i felt: En case-studie av biologiske markører under solokryssing av Antarktisk. Necesse 5:181–199

Jylhävä, J., Pedersen, N. L. & Hägg, S. (2023). Biological age predictors. EBioMedicine 21, 29–36.

Kern, C., Polley, K., Hamrock, M., Bussler, W., James, K., Varadharaj, S., & Troup, J. (2019). Antarctica crossing world record: A case study on the use of functional nutrition and its effect on nutrient demand, body composition and selected biomarkers of performance. Curr Dev Nutr 3(P12-052-19). https://doi.org/10.1093/cdn/nzz035.P12-052-19

Krištić, J., Vučković, F., Menni, C., Klarić, L., Keser, T., Beceheli, I., Pučić-Baković, M., Novokmet, M., Mangino, M., Thaqi, K., Rudan, P., Novokmet, N., Sarac, J., Missoni, S., Kolčić, I., Polašek, O., Rudan, I., Campbell, H., Hayward, C., Aulchenko, Y., Valdes, A.,, Wilson J. F., Gornik, O., Primorac, D., Zoldoš, V., Spector, T., & Lauc, G. (2014). Glycans are a novel biomarker of chronological and biological ages. The journals of gerontology. Series A, Biological sciences and medical sciences, 69(7), 779–789. https://doi.org/10.1093/gerona/glt190.

Levine, M. E., Lu, A. T., Quach, A., Chen, B. H., Assimes, T. L., Bandinelli, S., Hou, L., Baccarelli, A. A., Stewart, J. D., Li, Y., Whitsel, E. A., Wilson, J. G., Reiner, A. P., Aviv, A., Lohman, K., Liu, Y., Ferrucci, L., & Horvath, S. (2018). An epigenetic biomarker of aging for lifespan and healthspan. Aging, 10(4), 573–591. https://doi.org/10.18632/aging.101414

Lin, Y., Kim, J., Metter, E. J., Nguyen, H., Truong, T., Lustig, A., Ferrucci, L., & Weng, N. P. (2016). Changes in blood lymphocyte numbers with age in vivo and their association with the levels of cytokines/cytokine receptors. Immunity & ageing: I & A, 13, 24. https://doi.org/10.1186/s12979-016-0079-7

Liu, Z., Kuo, P. L., Horvath, S., Crimmins, E., Ferrucci, L., & Levine, M. (2018). A new aging measure captures morbidity and mortality risk across diverse subpopulations from NHANES IV: A cohort study. PLoS medicine, 15(12), e1002718. https://doi.org/10.1371/journal.pmed.1002718

Macdonald-Dunlop, E., Taba, N., Klarić, L., Frkatović, A., Walker, R., Hayward, C., Esko, T., Haley, C., Fischer, K., Wilson, J. F., & Joshi, P. K. (2022). A catalogue of omics biological ageing clocks reveals substantial commonality and associations with disease risk. Aging, 14(2), 623–659. https://doi.org/10.18632/aging.203847.

Moqri, M., Herzog, C., Poganik, J. R., Biomarkers of Aging Consortium, Justice, J., Belsky, D. W., Higgins-Chen, A., Moskalev, A., Fuellen, G., Cohen, A. A., Bautmans, I., Widschwendter, M., Ding, J., Fleming, A., Mannick, J., Han, J. J., Zhavoronkov, A., Barzilai, N., Kaeberlein, M., Cummings, S., Kennedy, B.K., Ferrucci, L., Horvath, S., Verdin, E., Maier, A.B., Snyder, M.P., Sebastiano, V., & Gladyshev, V. N. (2023). Biomarkers of aging for the identification and evaluation of longevity interventions. Cell, 186(18), 3758–3775. https://doi.org/10.1016/j.cell.2023.08.003

Nicolas, M., Martinent, G., Palinkas, L. & Suedfeld, P. (2022). Dynamics of stress and recovery and relationships with perceived environmental mastery in extreme environments. J. Environ. Psychol. 83, 101853

Palinkas, L. A. & Suedfeld, P. (2008). Psychological effects of polar expeditions. The Lancet 371, 153–163

Palinkas, L. A., Suedfeld, P. & Steel, G. D. (1995). Psychological functioning among members of a small polar expedition. Aviat. Space Environ. Med. 66, 943–950.

Pattyn, N., Mairesse, O., Cortoos, A., Marcoen, N., Neyt, X., & Meeusen, R. (2017). Sleep during an Antarctic summer expedition: new light on "polar insomnia". Journal of applied physiology (Bethesda, Md.: 1985), 122(4), 788–794. https://doi.org/10.1152/japplphysiol.00606.2016

Peri, A., Scarlata, C. & Barbarito, M. (2000). Preliminary studies on the psychological adjustment in the Italian Antarctic summer campaigns. Environ. Behav. 32, 72–83.

Poganik, J. R., Zhang, B., Baht, G. S., Tyshkovskiy, A., Deik, A., Kerepesi, C., Yim, S. H., Lu, A. T., Haghani, A., Gong, T., Hedman, A. M., Andolf, E., Pershagen, G., Almqvist, C., Clish, C. B., Horvath, S., White, J. P., & Gladyshev, V. N. (2023). Biological age is increased by stress and restored upon recovery. Cell metabolism, 35(5), 807–820.e5. https://doi.org/10.1016/j.cmet.2023.03.015

Pyrkov, T. V., Sokolov, I. S. & Fedichev, P. O. (2021). Deep longitudinal phenotyping of wearable sensor data reveals independent markers of longevity, stress, and resilience. Aging (Albany NY) 13, 7900

Ráčková, L., Pompa, T., Zlámal, F., Barták, M., Nývlt, D., & Bienertová-Vašků, J. (2024). Physiological evidence of stress reduction during a summer Antarctic expedition with a significant influence of previous experience and vigor. Scientific reports, 14(1), 3981. https://doi.org/10.1038/s41598-024-54203-9

Sandal, G. M., Leon, G. R. & Palinkas, L. (2006). Human challenges in polar and space environments. Rev. Environ. Sci. Biotechnol. 5, 281–296.

Sandal, G. M., van deVijver, F. J. R. & Smith, N. (2018). Psychological hibernation in Antarctica. Front. Psychol. 9, 2235.

Strewe, C., Thieme, D., Dangoisse, C., Fiedel, B., van den Berg, F., Bauer, H., Salam, A. P., Gössmann-Lang,. P, Campolongo, P., Moser, D., Quintens, R., Moreels, M., Baatout, S., Kohlberg, E., Schelling, G., Choukèr, A. & Feuerecker, M. (2018). Modulations of Neuroendocrine Stress Responses During Confinement in Antarctica and the Role of Hypobaric Hypoxia. Front. Physiol. 9:1647. https://doi.org/10.3389/fphys.2018.01647

Zabara, D., Kozeretska, I., Deineko, I., Anoshko, Y., Shapovalenko, N., Stamboli, L., & Dons’koi, B. (2021). Immune factors and health of Antarctic explorers. Ukrainian Antarctic Journal, (2), 94-105. https://doi.org/10.33275/1727-7485.2.2021.68

Downloads

Published

2024-10-07

How to Cite

Petrov, L., & Alexandrova, A. (2024). BIOLOGICAL AGE ESTIMATION OF THE PARTICIPANTS IN THE 32-ND BULGARIAN ANTARCTIC EXPEDITION. KNOWLEDGE - International Journal , 66(4), 511–516. Retrieved from https://ikm.mk/ojs/index.php/kij/article/view/7063